PASCAL 8000

| BM 360/ 370 Versi on

for OS and VS environnents

REFERENCE MANUAL

VERSI ON 1.2

1st february, 1978

Original authors - Hitac version

Teruo H kita Uni versity of Tokyo
Ki yoshi I shihata Japan

Rewritten for | BM 360/ 370 Operation

CGor don Cox Australian Atom c
Jeffrey Tobi as Ener gy Commi ssi on
Australia

Pascal 8000 Reference Manual | BM 360/ 370 versi on

TABLE OF CONTENTS

| NTRCDUCTI ON 5
NOTATI ON - BACKUS NAUR FORM 6

SUMMARY OF EXTENSI ONS TO STANDARD PASCAL 6
1. Constant definition for structured types 6
Variable initialisations 7
3. Forall statenents 7
4. Loop statenents 7
5. Procedure skel etons 8
6. Type specifications for parameter and function results 9
7. Exponentiation 9
8
9

Readi ng character strings 10

. Extension of procedures "read" and "wite" 10

10. The type-change function 10
11. Ext ended case st at enment 11
12. Addi ti onal standard procedures 11
13. Addi tional standard type 11
LANGUAGE DEFI NI TI ON 12
1. VOCABULARY 12
2. NUMBERS, STRINGS AND | DENTI FI ERS 13
2.1 Nunbers 13
2.2 Strings 13
2.3 ldentifiers 13

3. CONSTANT DEFI NI TI ONS 14
4. TYPE DEFI NI TI ONS 15
4.1 Sinple types 15
4.1.1 Scal ar types 15

4.1.2 Subrange types 15

4.2 Structured types 16
4.2.1 Array types 16

4.2.2 Record types 16

4.2.3 Set types 17

4.2.4 File types 17

4.2.5 Pointer types 18

5. DECLARATI ONS AND DENOTATI ONS OF VARI ABLES 19
5.1 Entire variabl es 19
5.2 Conponent vari abl es 19
5.2.1 I ndexed vari abl es 19

5.2.2 Field designators 19

5.2.3 File buffers 20

5.3 Referenced vari abl es 20

Pascal 8000 Reference Manual

6. VARI ABLE | NI TI ALI ZATI ONS

7.

10.

11.

EXPRESSI ONS

7.1 Qperators

7.1.1 The operator not
The exponenti ation operator
Mul ti plying operators
Addi ng operators
Rel ati onal operators
on designators

JNNNAN
SPPPEe
~ O WN

7.2 Func
STATEMENTS
8.1 Sinple statenments
8.1.1 Assignnment statenents
8.1.2 Goto statenents
8. 1.3 Procedure statenents
8.2 Structured statenents
1 Conpound statenents
2 Conditional statenents
8.2.2.1 |f statenents
8.2.2.2 Case statenents
8.2.3 Repetitive statenents
8.2.3.1 Wile statenents
8.2.3.2 Repeat statenents
8.2.3.3 For statenents
8.2.3.4 Forall statenments
8.2
t

.3.5 Loop statenents
h statenments

PROCEDURE DECLARATI ONS

9.1 Standard procedures
9.1.1 File handling procedures
9.1.2 Dynamic allocation procedures
9.1.3 Data transfer procedures
9.1.4 Further standard procedures

FUNCTI ON DECLARATI ONS
10.1 St andard functions

10. Pr edi cat es
10. Arithnetic functions
10. Transfer functions

10.
10.

Furt her standard functions
The type-change function

PEPEEPE
arwWN R

I NPUT AND OUTPUT PROCEDURES
11.1 The procedure read
11.1.1 F of type text
11.1.2 F of non-text type
11.2 The procedure readln
11. 3 The procedure wite
11.4 The procedure witeln
11.5 Printer-control characters

| BM 360/ 370 versi on

21

22

23
23
23
23
24
24
24

25
25
25
25
26
26
26
26
27
27
27
28

28
29
29
30

31
32
32
33
33
34

35
35
35
35
36
36
37

38

38
39
39
39
40
41

Pascal 8000 Reference Manual

12. PROGRAMS

ACKNOWNLEDGEMENTS

APPENDI X 1 - Conpil er features.

Li sting format

Li sting control

Conpi | er options

Conpi | er error nessages
Execution sunmary

Post - nort em dunp

M scel | aneous

NoohkwneE

APPENDI X 2. - File support.
APPENDI X 3. - Linking to external procedures
APPENDI X 4. - How to run the system

1. The conpile and go system

2. The |inkage editor version

APPENDI X 5. - Operating system dependence

REFERENCES

| BM 360/ 370 versi on

42

43
44
44
45
46
47
47
49
50
53
57
57
59
61

62

Pascal 8000 Reference Manual | BM 360/ 370 versi on

1. | NTRODUCTI ON

Pascal is a general purpose progranmm ng | anguage proposed and defi ned
by Wrth(1971a). It was later revised and appeared as Standard Pasca
(Jensen and Wrth, 1975). Its principal enphases are on teaching
programmng and on the reliable and efficient inplenentation of the
| anguage. It now seens to have gai ned considerabl e popularity anong
many computing conmuniti es.

Pascal may be considered a successor to ALGOL 60, from which it

inherits syntactic appearances . The novelties of Pascal lie mainly in
its anple data structuring facilities such as record, set and file
structures. It also affords nore sophisticated control structures

suitable to "structured programm ng" (Dahl, Dijkstra and Hoare, 1972).

An extended version of Standard Pascal, named Pascal 8000, has been
designed, and a conpiler inplenented for the H TAC 8800/ 8700 conputer
(whi ch has an I BM 370-1i ke machi ne instruction set) under the operating
system OS7 at the Conmputer Centre of the University of Tokyo (Hikita,
I shihata, 1976; |Ishihata, H kita, 1976). This conpiler is itself
witten in Pascal, and is supported by a runtine systemwitten in
Fortran and Assenbl er | anguage. This version has now been adapted at
the AAEC research establishment for use on | BM 360/ 370 conputers under
the OS famly of operating systens. The runtinme system has been
rewitten entirely in Assenbler |language with sone changes and
addi ti ons, and additional new | anguage features have been incorporated.

Several proposals for extensions to Pascal have been published, (for
exanple Lecarme and Desjardins, 1975). Extensions inplenented at the
University of Tokyo are concerned wth constant definitions for
structured types, variable initialisations, two new control structures
(forall and | oop), specifications of procedure and function paraneters,
and specifications of types. Extensions inplenented at the AAEC i ncl ude
an exponentiation operator, type-change functions, case-tag |list syntax
extensi ons, and extensions to read and wite capabilities. W believe
that, though they may not be entirely new, the extensions do not disturb
the original consistency and transparency of both syntax and senanti cs,
and give the user nore power for describing algorithnms easily and
clearly.

This reference manual gives a conplete specification of Pascal 8000,
i ncludi ng both the above sets of extensions. Additional information on
the operational aspects of the conmpiler is included in the Appendices.
Since this manual is intended to be a rigid and concise description of
our inplenentation, we recomend other appropriate references such as
Jensen and Wrth (1975) and Yasamura, Hikita and Ishihata (1975) as
i ntroductory gui des to the Pascal |anguage.

Pascal 8000 Reference Manual | BM 360/ 370 versi on

NOTATI ON - BACKUS- NAUR FORM

According to traditional Backus-Naur form (bnf), syntactic constructs
are denoted by English words encl osed between the angul ar brackets < and
> These words al so describe the nature or neaning of the construct,
and are used in the acconpanyi ng description of semantics. Zero or nore
occurrences of a construct is indicated by enclosing the construct
within netabrackets =~ and o . The square brackets [and] indicate
opti onal constructs. The synbol <enpty> denotes the null (zero-I|ength)
sequence of synbol s.

Summary of the Extensions to Standard Pascal

Following are brief explanations of the new features inplenmented in
the 1 BM 360/ 370 version of Pascal 8000.

1. Constant Definitions for Structured Types

In Standard Pascal one may define an identifier as a synonym for
constant data, but such constant definitions are applicable only to
nunbers and strings. In Pascal 8000 this facility is extended to
structured types such as the array, record (w thout variants) and set.

The wusual set notation denotes a constant set. The syntax of
"constant set" is defined along the |ines of "set":

<constant set> ::.= (. <constant set element list> .)
<constant set element list> ::=

<constant set element> ~,<constant set element>0 | <enpty>
<constant set elenent> ::= <constant> | <constant> .. <constant>

The following is an exanple of a constant definition for a set:
const evennunbers = (. 0, 2, 4, 6, 8 .);

For the array or record type, a new convenient notation is introduced
in order to sinplify the description of the constant value of these
types. Constants of these types are denoted by listing the val ues of
the nost basic (sinple, string or set type) conponents sequentially
bet ween the two synbols (# and #)

<structured constant> ::= (# <constant or constant set>
, <constant or constant set>0 #)
<constant or constant set> ::= <constant> | <constant set>

Whien defining an identifier as a synonymfor a structured constant,
one is required to specify its type. Thus the syntax of the constant
definition becomnes:

<constant definition> ::= <identifier>
<identifier>

<constant or constant set>
<structured constant> : <type>

Pascal 8000 Reference Manual | BM 360/ 370 versi on

Following is an exanple of constant definition for structured constants:

const vO = (# 0.0, 0.0, 0.0 #) : array(.1..3.) of real;
pl = (# 'tom, 20, male #) : person;

2. Variable Initialisations

The ability to initialise variables is introduced in Pascal 8000
Val ues of variables declared in the outernpbst block, nanely the nmain
program may be initialised at conpile tinme. The variables that can be
initialised are of types sinple, string, array, record (wi t hout
variants) and set. No type specification is necessary. The syntax is

<variable initialisation part> ::=
val ue <variable initialisation> ;<variable initialisation>0;

| <empty>

<variable initialisation> ::=
<entire variabl e> := <constant or constant set>
<entire variable> := <structured constant>

The variable initialisation part is placed between the variable
decl aration part and the procedure and function declarations of the
out ernpst bl ock. For exanpl e:

value setl := (. .) ;
m:=(#0, 0, 0, 0 #) ;

3. Forall Statenments

A forall statement is a new type of control structure operating over
t he conponents of a set. It specifies that a statenent is to be
repeatedly executed while a control variable ranges anong all the
el ements of a certain set. The syntax is

<forall statenent> ::= forall <control variable> in <expression>
do <statement>

The expression follow ng the synbol in nust be of type set, and the
control variable follow ng the synbol forall nust have the base type of
the set. For exanple the follow ng statenment

forall x in setl do if odd(x) then witeln(x)

sel ects and wites out all the odd nunbers fromthe set setl.

4. Loop Statenents

A new type of control structure, the |oop statenent, is introduced to
give nore sophisticated loop exit control. A loop statenent specifies
that a group of statenents is to be repeatedly executed until control

Pascal 8000 Reference Manual | BM 360/ 370 versi on

encounters an event. Events are neither bool ean vari abl es nor
conditions, but signals that indicate escape fromthe I oop. Control can
then be transferred to the statenent |abelled by the event naned in the
"postlude" part, and that statenent is executed before control |eaves
the loop statenment. The syntax of the |oop statement is

<l oop statement> ::= loop <statenment> ~;<statement>0 end |
loop until <event> ~,<event>0 : <statenent> —;<statenent>0
postl ude <event> : <statenent> " ;<event> : <statenent>0
end
<event> ::= <identifier>

Syntactically, events are used just |Ilike procedure calls, but only
within |loop statements. The scope of an event is the |oop statement in
which it is defined. The predefined event named exit is provided which
nmeans that no "postlude" statenent is supposed when escaping from the
| oop statenent. An exanple of the use of the |oop statenment is

|l oop until found, nofound:
D=0+
if table(.i.) = x then found
if i = tablesize then nofound
postlude found: key :=i
nof ound: errorflag := true

end

5. Procedure Skel etons

In Standard Pascal, the syntax for the declaration of a procedure or
function with procedure or function paranmeters is as follows

<formal paraneter section> ::= <paranmeter group>
var <paraneter group> |
procedure <identifier> ~,<identifier>0
functi on <paraneter group>

<parameter group> ::= <identifier> ,<identifier>0 : <type identifier>

This definition, however, causes sone difficulties at run time with the
possi bl e conflicts of type and nunber of the paranmeters of the procedure
or function parameter. It is difficult for the conpiler to detect this
ki nd of mi smatch in the source program

In Pascal 8000, the notion of the <procedure skeleton> is enployed as
a solution to this problem This solution was originally proposed by
Lecarnme and Desjardins (1975). The idea is to specify the types of the
par anet ers of procedure or function paraneters explicitly. The syntax
above is then replaced by

<formal parameter section> ::= <paranmeter group> | var <paraneter group>
| procedure <procedure skel eton> —, <procedure skel et on>0
functi on <procedure skel eton> ~, <procedure skel eton> : <type>
<procedure skeleton> ::= <identifier> | <identifier> (<type> ~, <type>0)

Pascal 8000 Reference Manual | BM 360/ 370 versi on

In the original proposal, only <type identifier> is allowed rather
than the less restrictive <type> for <procedure skel eton> This kind of
extension occurs in two nore places in Pascal 8000. (See the follow ng
section.)

As an example, the declaration of a function to find zeroes of
paraneter functions (say, by bisection) would be:

function bisect (function f(real) : real) : real
i nstead of as in Standard Pascal

function bisect (function f : real) : real ;

6. Type specifications for parameter and function results

It frequently occurs that in Standard Pascal, only a type identifier
is allowed instead of the general formof type specification. For
exanpl e,

<parameter group> ::= <identifier> ,<identifier>0 : <type identifier>
<result type> ::= <type identifier>

In Pascal 8000 this restriction is relaxed to allow <type> instead of
<type identifier> in the above type specifications. The syntax is
ext ended to:

<paraneter group> ::= <identifier> ~,<identifier>0 : <type>
<result type> ::= <type>

As a result, the follow ng declaration of a function is now possi bl e:
function f(p : 1..10) :(male,fenmale) ;

7. Exponenti ation

Exponenti ation is supported. The nultiple character which signifies
exponentiation is ** . Thus a**7 is equivalent to a-, and a**b**c is
equi val ent to a**(b**c).

The bnf syntax for exponentiation is

<factor> ::= <facbody> | <fachody> ** <factor>
<facbody> ::= <variabl e> | <unsigned constant> | <expression>
<function designator> | <set> | not <factor>

The semantics permits <facbody> to contain only variables, constants
expressions and function designators for the purpose of exponentiation.

If the power factor is of type real, then a**b is cal cul ated by
eval uating exp(b*In(a)), and the standard routines for exp and In are
i nvoked. If the type of the power is integer, then a run-tinme system

Pascal 8000 Reference Manual | BM 360/ 370 versi on

call is made.

8. Readi ng Character Strings

An extension has been made so that variables of type
packed array (.n..p.) of char
(i.e. strings) may be read
The syntax specification is:
read ([file,] x:m or read ([file,] X)

where x is a variable of type packed array of char, and mis an integer

expression, variable or constant. The following cases need to be
consi dered, given that the remaining |length of the input record is r.
i) if mis not specified, and | ength(x)>r, then r characters will be

read into x, and length(x)-r blanks inserted to pad x.
ii) if mis not specified, and |l ength(x)<=r, then length(x) characters
will be read into x and the input pointer noved up by |ength(x).
iii) if mis specified, then replace "length(x)" by "mn(mlength(x))"
ini) and ii) above.

9. Extension of procedures "read" and "wite" to non-text files

The standard procedures read and wite may now apply to any file,
text or non-text. Operating on a non-text file, the definitions are

read(f,vl) is equivalent to
begin vi:=f@ get(f) end
and
wite(f,vl) is equivalent to
begin f@=vl; put(f) end
Standard procedures witeln and readln, however, may not be applied

to non-text files.

10. The Type-change Function

A "type-change" function has been introduced (courtesy Kl udgeanus
(1976)). The mechani sm provided by the standard functions "ord" and
"chr" has been extended, and now any type-identifier can be used to
change the type of an expression, with the expression result rensining
constant. The type function has one argurment, of any type. For exanple

10

Pascal 8000 Reference Manual | BM 360/ 370 versi on

var nanme : packed array (.1..4.) of char;
ebcdic : integer;

begi n
name: =' fred'
ebcdi c: =i nt eger (nane)

end

11. Extended Case Statement

Case-tag lists my now range over a nunber of constants, without
explicitly having to list each constant. The extended range is denoted
by:

<constant> .. <constant>
Thus,
4,6..10, 15, 30. . 45:
is now a valid case-tag list. A default exit is also supplied by:

el se: <st at enent >

i.e. else: is avalid case tag in every case statenment. The else tag
will be used if none of the other tags natch.

12. Additional Standard Procedures and Functions

Four additional standard procedures have been inplenented. These are
pack, unpack, halt, nessage

An additional standard function, card, is also inplenmented.

13. Additional Standard Type

The standard type alfa is defined to nmean packed array (.1..8.) of
char.

11

Pascal 8000 Reference Manual | BM 360/ 370 versi on

1. VOCABULARY

A Pascal program consists of a sequence of the follow ng basic
synbol s.

<basic synbol > ::= <letter> | <digit> | <special synbol>
<letter>::= a| bl c|] d]e|] f |l gl h|]i]ij]l k] '] m|] n
ol plalr|s|t]lulv]w|x]|]y]z]|$]|
<digit>::= 0] 1] 2| 3] 4| 5| 6| 7] 8] 9
<special symbol>::= + | - | * | [| =| <>| <] > <=] >=]| (]) |
Gt > === 1.1t &5
"l @l .. [#1#H 111 | o]~ "=]*
| <reserved word>
<reserved word> ::=div | mod | nil | in| or | and | not | if | then |
else | case | of | repeat | wuntil | while | do
for | to| downto | forall | loop | postlude
begin | end | with | goto | «const | var | type
value | array | record | set | file | function
procedure | |abel | packed | program

The construct
(* <any sequence of characters not containing "*)"> *)
or
" <any sequence of characters not containing "0"> 0

is called a comrent. Blanks, end-of-lines and comments are considered
to be separators. An arbitrary nunber of separators may be inserted
bet ween any two nunbers, strings, identifiers or special synbols without
affecting the nmeaning of the program subject to the following two
rul es:

i) Separators may not occur within nunbers, strings, identifiers, or
reserved words. Bl anks within strings have the same neani ng as
ot her characters.

ii) At |least one separator nust occur between two consecutive nunbers,
identifiers or reserved words.

Note also that the synbols [and] can be used for array and set
operations if these characters are available. |[|f they cannot be easily
utilised, then the substitute character pairs are (. and .). The same
applies to the comment braces =~ and 6, which may be interchanged with (*
and *).

Note also that the underscore character acts as an alphabetic
this is an identifier is a valid identifier.

12

Pascal 8000 Reference Manual | BM 360/ 370 versi on

2. NUMBERS, STRI NGS AND | DENTI FI ERS

2.1. Nunbers

There are two kinds of constant nunbers, nanmely integers and reals.

<unsi gned nunber> ::= <unsigned integer> | <unsigned real >
<unsigned integer> ::= <digit sequence>

<digit sequence> ::= <digit> <digit>0

<unsigned real> ::= <digit sequence> . <digit sequence>

<digit sequence> . <digit sequence> E
<scal e factor>
<digit sequence> E <scale factor>

<scal e factor> ::= <unsigned integer> | <sign> <unsigned integer>
<sign> 1=+ | -

Exanpl es: 1024 3.14 5.772E-1 1E- 10

2.2. Strings

Sequences of characters enclosed by single quote marks are called
strings. Strings consisting of a single character are constants of the
standard type char. Strings consisting of n (>1) enclosed characters
are constants of type:

packed array (. 1..n .) of char

If the string is to contain a quote mark, then this quote mark nmust be
witten tw ce.

<string> ::="' <character> ~<character>0 '

Exanples: 'a'" ‘'don''t' "is this a string?

2.3. ldentifiers

Identifiers serve to denote constants, types, variables, fields,
events, procedures and functions.

<identifier> ::= <letter> <letter or digit>0
<letter or digit> ::= <letter> | <digit>

The length of an identifier is arbitrary, but only the first eight
characters are significant, nanely, identifiers wth the same first
ei ght characters are considered to be the sane identifier. Identifiers
must be different from reserved words. Certain identifiers, called
standard identifiers, are predefined, such as integer, char and bool ean.
In contrast to the reserved words, one nay redefine any standard

identifier. Identifiers must be wunique within their scope of
definition.
Exanpl es: pi person x5

13

Pascal 8000 Reference Manua

3. CONSTANT DEFI NI TI ONS

A constant definition serves to introduce an identifier as a

for constant data. One may define

record (without variant part) or set type.

the val ues of the
sequential ly,

array or record type,
of the data are listed
symbols (# and #),
di nensi onal arrays, the order
first.
<constant definition> ::= <identifier> =
<identifier> =
<structured
<constant or constant set> ::=

<constant > ::= <unsigned nunber> |

surrounded by
and followed by a type specification.
is on the basis of varying the |ast

<const ant >
<si gn> <unsi gned nunber > |
<si gn> <const ant

| BM 360/ 370 versi on

synonym
a structured constant of array,

For structured constants of
basi ¢ (unstructured) conponents
the two specia

For multi -
i ndex

<constant or constant set>|

constant> : <type>

<constant set>

identifier>

list> .)

<constant set el enent>
~,<constant set elenentod |
<const ant > .

<enpty>
<const ant >

or constant set>0 #)

<constant identifier> |
| <string>
<constant identifier> ::= <identifier>
<constant set> ::= (. <constant set el enent
<constant set elenment list> ::=
<constant set el ement> ::= <constant>
<structured constant> ::= (# <constant or constant set>
~, <const ant
Exanpl es: pi = 3.14159
m nuspi = -pi
title ='thisis atitle'
oddnunbers = (. 1,3,5,7,
vector = (# 0.0,0.0 #)

14

a}ray (.1..2.) of rea

Pascal 8000 Reference Manual | BM 360/ 370 versi on

4. TYPE DEFI NI TI ONS

A type definition associates an identifier with a specific data type.
A data type defines the set of values a variable may assunme. Every
variabl e occurring in a programnust be associated with one and only one

t ype.
<type definition> ::= <identifier> = <type>
<type> ::= <sinple type> | <structured type> | <pointer type>
4.1. Sinple types
<sinple type> ::= <scalar type> | <subrange type> | <type identifier>
<type identifier> ::= <identifier>
4.1.1. Scal ar types

A scal ar type defines an ordered set of values by enunmeration of the
identifiers which denote these values. An integer value that is
transparent to the programmer is associated with each of t hese
identifiers.

<scalar type> ::= (<identifier> ~,<identifier>o0)

Exanpl es: (cl ub, di anond, heart, spade)
(sunday, nonday, t uesday, wednesday, t hur sday, f ri day, sat ur day)

Besi des the user-defined scal ar types expl ai ned above, the foll ow ng
four scalar types are predefined.

1) bool ean. A boolean value is one of the logical truth values
denoted by the predefined identifiers true and false
The lexical order is false < true.

2) I nteger. This incorporates the integers from -2Zce to 272 1
i ncl usi ve. Maxint is a predefined constant with a val ue
of 2Zcel.

3) Real. Real nunbers are expressed in double word, floating

format, and can take absolute val ues between 10- -« and
10-yu. This gives an accuracy of approxi mately 14 decim
digits.

4) Char. Each character is represented by the EBCD C code. Thei r
ordering and associated integer values are defined by
their internal representations.

4.1.2. Subrange types

A subrange type is defined as a subrange of another scalar type
(except for real, of course), by specifying the m nimumand nmaxi num

15

Pascal 8000 Reference Manual | BM 360/ 370 versi on

val ues of the subrange. The | ower bound nust be |ess than the upper.
<subrange type> ::= <constant> .. <constant>

Exanpl es: -100..100 ‘a'..'z' nmonday. . fri day

4.2 Structured types

A structured type is specified by its conmponent types and structuring
net hods. There are four kinds of structuring nethods: arrays, records,
sets, and files. Both arrays and records nmay be specified as packed
structures. This inplies that data el ements that can be represented by
| ess than one word will be "packed" together in words, thus occupying
the mninmum anount of storage. This representation is achieved at the
expense of sone execution speed.

4.2.1 Array types

An array type is a structure consisting of a fixed nunber of
conponents all of which are of the same type. Each conponent is
di stingui shed by an index. The index nust be a sinple type of finite
el ements (thus, the type real is not allowed as an index).

<array type> ::= array (. <index type> ,<index type>0 .)
of <conponent type>

<i ndex type> ::.= <sinple type>

<conponent type> ::= <type>

Exanpl es: array (. boolean .) of week
array (. 1..10, 1..10 .) of rea
array (. 1..80 .) of char

4.2.2. Record types

A record type consists of a fixed nunber of conponents, called
fields, of possibly different types. A record type nmmy have severa
variants, and a tagfield specifies which variant is applicable at a
given tine. The scope of a field identifier is the smallest record in
which it is defined

<record type> ::=record <field list> end
<field list> ::= <fixed part> | <fixed part>; <variant part>
<variant part>

<fixed part> ::= <record section> ";<record section>0

<record section> ::= <field identifier> ", <field identifier> :<type>
| <empty>

<field identifier> ::= <identifier>

<variant part> ::= case <tag field> <type identifier> of
<vari ant> ~; <vari ant >0

<tag field> ::= <identifier>: | <enpty>

16

Pascal 8000 Reference Manual | BM 360/ 370 versi on

<variant> ::= <record label list>: (<field list>) | <enpty>
<record label list> ::= <case | abel> ", <case | abel >0
<record | abel > ::= <constant >

Exanpl es: record
day : 1 .. 31;
month : 1 .. 12;
year : integer
end

record

nane :@ alfa;

case sex : bool ean of
true : (age : integer);
false : (height : real)

end

4.2.3. Set types

A set type defines the range of val ues which beconmes the powerset of
its so-called base type. A base type nust be a sinple type (except for
real), and its associated integer values nmust be between 0 and 63. (For
this reason, a set of characters is not allowed due to the
representation by the EBCDI C code).

<set type> ::= set of <base type>

<base type> ::= <sinple type>

Exanpl es: set of 1..10 ; set of nonday..friday

4.2.4. File types

Afile type is a structure consisting of a sequence of conponents all
of which are of the sane type. Conmponents nmust in turn not be of type
file.

<file type> ::= file of <type>

Exanples: file of integer

file of array (. 1..3 .) of rea

The standard file type "text" specifies the files of conponent type
char, i.e. file of char. Files of type text are considered to be
subdivided into lines, each separated by an end-of-line narker. The
standard file names "input" and "output" are of type text, and represent

the standard input and output files for the user

17

Pascal 8000 Reference Manual | BM 360/ 370 versi on

4.2.5. Pointer types

A variable of pointer type serves to "point" to data and contains the
address of the itempointed to. The pointer value nil belongs to every
pointer type, and it in turn points to no data at all. The dereference
operator "@ can be used to access the data being pointed to by a
poi nter variable or structure.

<poi nter type> ::= @<type identifier>

Exanpl es: @ nt eger @er son

18

Pascal 8000 Reference Manual | BM 360/ 370 versi on

5. DECLARATI ONS AND DENOTATI ONS COF VARI ABLES

A variable declaration specifies the variables local to a procedure
or function, and associates themto their data types. Every variable
occurring in a statement nust have been previously decl ared.
<variable declaration> ::= <identifier> ", <identifier>0 : <type>

Exanpl es: X,Y,z . real pl,p2 : person

Denot ati ons of vari abl es ei t her designate entire variables,
conmponents of variables, or variables referenced by pointer variabl es.

<variable> ::= <entire variabl e> | <conponent vari abl e>
<referenced vari abl e>

5.1. Entire vari abl es

<entire variable> ::= <variable identifier>
<variable identifier> ::= <identifier>

5.2. Conponent vari abl es

Conponent variables are the conponents of the data of array, record
or file type.

<component vari abl e> ::= <indexed variable> | <field designator>
<file buffer>

5.2.1. Indexed vari abl es

An indexed variable is a component of a variable of type array. The
types of the expressions used as indices must coincide with those that
are defined as index types.

<i ndexed variable> ::= <array vari abl e>

(. <expression> ~, <expression>0 .)
<array variable> ::= <variabl e>
Exanpl e: matrix (. i+1, 2*j+1 .)

5.2.2. Field designators

A field designator is a conponent of a variable of record type.

<field designator> ::= <record variable> . <field identifier>
<record variabl e> ::= <vari abl e>

19

Pascal 8000 Reference Manual | BM 360/ 370 versi on

Exanpl e: per son. nane fam |ly. parents. son

5.2.3. File buffers

Only one conponent of a file is directly accessible at any instant.
Thi s conponent is represented by the buffer variable of the conponent

t ype.

<file buffer> ::= <file variable> @
<file variable> ::= <vari abl e>

Exanpl e: filel@

5.3. Referenced vari abl es.

A referenced variable is a variable pointed to by a pointer variabl e.

<referenced variable> ::= <pointer variable> @
<poi nter variable> ::= <vari abl e>
Exanpl e: pl@ s@r@

20

Pascal 8000 Reference Manual | BM 360/ 370 versi on

6. VARI ABLE | NI TI ALI ZATI ONS

Variables declared in the outernpst block nmay be initialized at
conpile tine. Variables of array and record type (wi thout variant
parts) are initialized by structured constants.

<variable initialization> ::= <entire variable> : =
<constant or constant set>
<entire variable> :=
<structured constant>

0
(# 1.0,1.0,1.0 #)

Exanpl es: k :

21

Pascal 8000 Reference Manual | BM 360/ 370 versi on

7. EXPRESSI ONS

An expression consists of operators and operands, where operands are
ei ther constants, variables or function designators. It specifies a
rule for evaluation of a value, where the conventional rules of left to
ri ght eval uation and operator precedence are observed. The operator not

has the hi ghest precedence, next the exponentiation operator, next t he
nmultiplying operators, then the adding operators, with the relationa
operators taking the | owest precedence. An expression enclosed wthin

par ent heses is evaluated independently of preceding or follow ng
operators.
<expression> ::.= <sinple expression>

<si npl e expression> <rel ational operator>
<si npl e expressi on>

<sinple expression> ::= <ternk | <sign> <ternp |
<si npl e expressi on> <addi ng operator> <ternp
<ternp ::= <factor> | <ternmr <nultiplying operator> <factor>
<factor> ::= <facbody> | <fachody> <exponenti ati on operat or>
<factor>
<facbody> ::= <unsigned constant> | <variable> | <set>

<function designator> | not <factor>
(<expression>)

<set> ::= (. <elenent list> .)
<elenment list> ::= <elenent> ,<element>0 | <enpty>
<el ement> ::= <expression> | <expression> .. <expression>
Exanpl es:
(set) -- (. 3,6,9 .) (. sunday, nonday .)
(factor) -- 12 X X**y si n(0)
(a+b+c) 3**x**2.0
(term -- Xy bl and b2
(sinple
expression) -- -pi i-(j-k) b or odd(n)
(expression) -- 2in setl X<zy 3*j <>k

22

Pascal 8000

Ref erence Manua

7.1. Operators

7.1.1. The operator not

The operat or
Not e that the synbol

7.1.2. Exponentiation operator

not

inmplies the |ogica
N may al so be used.

<exponenti at

i on operator> ::=

* %

negati on of

| BM 360/ 370 versi on

its bool ean operand.

The type of the result of raising a to the power b is defined by the
foll owi ng table.
a / b r eal i nt eger (>=0) i nt eger (<0)
i nteger r eal i nt eger undefi ned
real real real real
Not e that the exponentiation operator is right associative
Exanple: a**b**c is equivalent to a**(b**c)
7.1.3 Miultiplying operators
<mul tiplying operator> ::=* | / | div | mod | and | &
oper at or operation oper ands result
* mul tiplication real, integer real, integer
set intersection set type T set type T
/ di vi si on real, integer rea
div di vi si on i nt eger i nteger
nmod nodul us i nt eger i nt eger
& | ogi cal conjunction | bool ean bool ean
and | ogi cal conjunction | bool ean bool ean
1) As long as at |east one of the operands is of type real, the result
is real.

23

Pascal

7.1.4. Adding operators

8000 Ref erence Manua

| BM 360/ 370 versi on

<addi ng operator> ::= + | - | or |
oper at or operation oper ands resul t
+ addi tion real, integer real, integer
set union set type T set type T
- subtraction real, integer real, integer
set difference set type T set type T
| | ogi cal disjunction bool ean bool ean
or | ogi cal disjunction bool ean bool ean
1). As long as at |least one of the operands is of real type, the result
is real.
7.1.5. Relational operators
<relational operator> ::= =| <> | <=| >=| <| >]| in| "=
operator | operation oper ands resul t
= <> |equality, sinple, string, set bool ean
A= |inequality or pointer types
<= >= | order sinple or string types | bool ean
set inclusion set types bool ean
< > order sinple or string types | bool ean
in set nenbership | base type and set type | bool ean
7.2 Function designators
A function designator is used in expressions to invoke a function.

For ma

<function designator> :

<function identifier> ::

Exanpl es: gcd(k, 1024)

~, <act ual
<identifier>

paraneters of the function are replaced by the actua

<function identifier> |
<function identifier> (<actua
par anmet er >0)

si n(x+y)

24

par anet ers.

par anet er >

Pascal 8000 Reference Manual | BM 360/ 370 versi on

8. STATEMENTS

A statement is the unit for the execution of a program Statenents
may be preceded by | abel s which designate them as the destination of
goto statenents. Labels are unsigned integers conmposed of at nost four
digits. The scope of a label is the entire text of the block in which
it is declared.

<statenment> ::= <unl abel | ed statenent> |

<l abel > : <unl abel | ed st at enent >
<unl abel l ed statement> ::= <sinple statenment> | <structured statenent>
<l abel > ::= <unsi gned i nt eger>

8.1. Sinple statenents

Sinple statenents are statenents not conposed of other statenents.
Events are used only in | oop statenents.

<sinple statenent> ::= <assignnment statenment> | <goto statement> |
<procedure statenent> | <enpty statenent> |
<event >

<enpty statenent> ::= <enpty>

8.1.1. Assignnent statenents

An assi gnment statement serves to replace the value of the 1eft-hand
variable with the eval uated val ue of the right-hand expression.

<assi gnnment statenent> ::= <variable> : = <expression> |
<function identifier> := <expression>

Both sides of the statenent must be of the same type (file types are
not allowed). The exceptions are when
1) The type of a variable is real and the type of an expression is
i nteger. In this case the integer value of the expression is
converted to real val ue.
2) One of themis a subrange type of the other.

Exanpl e: found := x <> 0
add := pl + p2

8.1.2. Goto statenents

A goto statenent indicates that control of execution is to be
transferred to another part of the programtext, namely to the place of
t he | abel .

<goto statenent> ::= goto <l abel >

25

Pascal 8000 Reference Manual | BM 360/ 370 versi on

Every | abel nust be declared in the |abel declaration part of the
procedure in which the label is defined. It is not possible to junp
into a procedure, but junping out of a procedure is possible. The
effect of a junp fromoutside a structured statenent into that statenent
i s not defined.

Exanpl es: goto 9999 goto 1977

8.1.3. Procedure statenents

A procedure statement activates the procedure named by the statement.
For mal par anet er s of the procedure are replaced by the actua
paraneters. There are four kinds of parameters - value, variable
procedure and function.

<procedure statement> ::= <procedure identifier>
<procedure identifier> (<actual paraneter>
", <actual paranetero)
<procedure identifier> ::= <identifier>
<actual paraneter> ::= <expression> | <variabl e>
<function identifier> | <procedure identifier>

Exanpl es: f(2.0,x1,funl)
cos(pi)

8.2. Structured statenents

Structured statements are statenments which thensel ves are conposed of
several other statements.

<structured statenment> ::= <conpound statenent> |

<condi tional statenent> |
<repetitive statenment> | <with statenent>

8.2.1. Conpound statenents

A compound statenent specifies that conponent statenments are to be
execut edi n the same sequence as they are textually witten.

<conpound statenent> ::= begin <statenent> ;<statenent>0 end

Exanpl e: begint :=x; x:=y;, y:=t end

8.2.2. Conditional statenents

A conditional statenment selects a single statenent of its conponent
statements for execution.

<conditional statement> ::.= <if statenment> | <case statenent>

26

Pascal 8000 Reference Manual | BM 360/ 370 versi on

8.2.2.1. If statenents

An if statenent specifies that a statenent is to be executed only if
a certain boolean expression is true. |If the expression is false, then
either no statement, or the statenent follow ng the synbol else, is
execut ed.

<if statement> ::= if <expression> then <statenment> |
if <expression> then <statenent> el se <statenent>

The syntactic anbiguity arising fromthe construct:
if el then if e2 then sl else s2
is resolved by interpreting it as equival ent to:
if el then begin if e2 then sl else s2 end

Exanpl es: if x=y then table(.i.):=true
if bl then a:=0 el se a:=a+l

8.2.2.2. Case statenents

A case statenent consists of an expression called the selector, and a
list of statements, each labelled by either a constant, or a range of
constants, of the type of the selector, or the default |abel "else:".
There can be only one default |abel per case statenent. The sel ector
type nust be sinple (except real). The case statenment selects for
execution that statement the |abel of which contains the current value
of the selector. If no such |abel exists, and no default |abel was
speci fied, an execution error results. |If a default label is supplied,
the default path is taken.

<case statement> ::= case <expression> of <case |list element>
", <case list elenent>0 end
<case list elenment> ::= <case label list>: <statement> | <enpty>
<case label list> ::= <case statenent |abel> ", <case statenent |abel> 0
| el se
<case statenent |abel > ::= <constant> | <subrange>
Exanpl e: case i +2*j of
3 oz = sin(x);
-1..1,10 : z := cos(x)
7 :z = tan(x);
else: z:=0
end

8.2.3. Repetitive statenents

Repetitive statenents specify that certain statenments are to be
repeatedly executed. Escaping fromthe loop is controlled by severa

27

Pascal 8000 Reference Manual | BM 360/ 370 versi on

nmet hods, dependi ng on the statenment used.
<repetitive statement> ::= <while statenent> | <repeat statenent> |

<for statenent> | <forall statement> |
<l oop statenent >

8.2.3.1. Wile statenents

A while statement indicates that a statenent is to be repeatedly
executed while the value of a certain boolean expression is true. The
bool ean expression is evaluated before each iteration
<whil e statement> ::= while <expression> do <statenent>

Exanpl e: while n(.i.)=0 do i:=i+1

8.2.3.2. Repeat statenents

A repeat statenment indicates that a group of statenents is to be
executed repeatedly until the value of a certain boolean expression
becones true. The bool ean expression is evaluated after each iteration.
Therefore, the group of statements is executed at | east once.

<repeat statement> ::= repeat <statenment> ";<statenment>0
until <expression>
Exanpl e: repeat x:=x+m(.i.); i:=i+k until i=c

8.2.3.3. For statenents

A for statement indicates that a statenent be repeatedly executed
whil e a progression of values is assigned to the control variable of the
for statenent.

<for statenent> ::= for <control variable> := <for list>
do <statemnent>
<control variable> ::= <entire variabl e>
<for list>::= <initial value>to <final value>
<initial value> downto <final val ue>
<initial value ::= <expression>
<final value> ::= <expression>

The control variable, the initial value, and the final value nmust be

of the sanme sinple type. They may not be of type real. The val ue of
the control variable nust not be altered in the repeated statenent. The
initial and final values are evaluated only once. |If, in the case of to

(downto), the initial value is greater (less) than the final value, the
controlled statenent is not executed. The final value of the contro
variable is left undefined on nornmal term nation of the for statenent.

28

Pascal 8000 Reference Manual | BM 360/ 370 versi on

Exanpl es: for i:=1to 100 do x:=x+y(.i.)

for j:=10 downto -c do if j=a then goto 99

8.2.3.4. Forall statenents

A forall statement indicates that a statenent is to be repeatedly
executed for each elenent of a certain set.

<forall statement> ::= forall <control variable> in <expression>
do <statenent >

The type of the variable nust be that of the base type of the
expression, which in turn nust be of set type. The value of the contro
variable must not be altered in the repeated statenent. The set
expression is evaluated only once. The final value of the contro
variable is left undefined on normal exit fromthe forall statenent.

Exanpl es: forall day in week do wage: =wage+c
forall x in (.0,1.) + set0 do count:=count+1

8.2.3.5. Loop statenents

A loop statenent indicates that a group of statements is to be
repeatedly executed until an event nane is encountered. Control is then
transferred to the statenment | abelled by that event nane in the postlude
part. Before termnation of the |loop statement, that statenent is
execut ed once.

<l oop statement> ::= | oop <statenent> ~; <staterment>0 end
|l oop until <event> ~, <event>0 : <statenent>
T; <st atement >0
post | ude <event> : <statenent> —;<event> :

<st at enent >0

end
<event> ::= <identifier>

Syntactically, events nay be used |like statements, but only wthin
| oop statenents. The scope of an event is the |oop statement in which
it is defined. The predefined event nane exit nmeans that no "postlude"
statenment is supposed when escaping the | oop statenent.

29

Pascal 8000 Reference Manual | BM 360/ 370 versi on

Exanpl e: |l oop until found, nofound:
if table(.i.)=x then found;
i:=i+1;
if i=tableix then nofound
post | ude
f ound: ;

nof ound: begin tabl e(.tableix.):=x;
tabl ei x: =t abl ei x+1 end
end

8.2.4. Wth statenents

A with statement opens the scope containing the field identifiers of
the specified record variables, so that the field identifiers may occur
as variable identifiers. Wthin it the fields of record variabl es nay
be designated only by its field identifiers.

<with statement> ::= with <record variable |ist> do <statenent>
<record variable list> ::= <record vari abl e> ~, <record variable> 0

No assignnments may be made to any el enent of the record variable |ist
inthe with statenent.

Exanpl e: Wi th person do begin nane:="nari'; age:=20 end

30

Pascal 8000 Reference Manual | BM 360/ 370 versi on

9. PROCEDURE DECLARATI ONS

Procedure declarations serve to define a programpart which can be
activated (possibly recursively) by procedure statenents.

<procedure declaration> ::= <procedure headi ng> <bl ock>
<procedure heading> ::= procedure <identifier> ;

procedure <identifier>
(<formal paraneter section>
T, <formal paraneter section>0) ;
<formal paranmeter section> ::= <paraneter group> | var <paraneter group>
| procedure <procedure skel eton> —, <procedure skel et on>0
| function <procedure skel eton> ~, <procedure skel eton>0 : <type>
<paraneter group> ::= <identifier> ", <identifier>0 : <type>
<procedure skeleton> ::= <identifier>
<identifier> (<type> ,<type>0)

An identifier followi ng the symbol procedure denotes the nanme of the
procedure. The formal paraneter section lists the name of each forma
paraneter followed by its type. Four kinds of paranmeters are possible
val ue paraneters, variable parameters, procedure paraneters and function
paraneters. For the value paraneters, the actual paraneters nust be
expressions, and their values are evaluated and passed when the
procedure is called. Parameters preceded by the synbol var are variable
paraneters, and the correspondi ng actual paraneters nmust be vari ables.
When the procedure is called, variable fornmal paraneters are replaced by

actual paraneters. File paraneters nust be specified as variable
paraneters. Paraneters preceded by the synbols procedure and function
are procedure and function paranmeters respectively. Correspondi ng

actual paraneters are procedures and functions, wth the follow ng

rul es:

1) They must have val ue paraneters only.

2) The nunber and types of their parameters nust coincide wth those
specified in the procedure skel etons.

3) Actual paranmeters nust not be the standard procedures or functions.

<bl ock> ::= <l abel declaration part>
<constant definition part>
<type definition part>
<vari abl e declaration part>
<procedure and function declaration part>
<statenment part>

<l abel declaration part> ::= |abel <label> ", <label>0 ; | <enmpty>
<constant definition part> ::= const <constant definition>
“;<constant definition>0 ; | <enpty>
<type definition part> ::= type <type definition>
T;<type definition>0 ; | <enpty>
<variabl e declaration part> ::= var <variable declaration>
“;<variable declaration>0 ; | <enpty>

<procedure and function declaration part> ::=
“<procedure or function declaration>;0
<procedure or function declaration> ::= <procedure decl aration>
<function decl aration>

31

Pascal 8000 Reference Manual | BM 360/ 370 versi on

<statement part> ::= <conpound st atenent >

The |abel declaration part lists all the labels which nmark a
statenment in the statement part of this block. The constant definition
part defines all the synonyns for constants |local to the block. The
type definition part contains all the type definitions local to the
bl ock. The variable declaration part contains all the variable
declarations local to this block. The pr ocedur e and function

declaration part defines subordinate program parts, nanely, procedures
and functions. Labels, constants, types, variables, procedures and
functions have significance only wthin the block in which they are
decl ared, which is called the scope of these itens. If a nanme is
redefined within a bl ock, the scope of the second occurrence of the name
is excluded from the scope of the first. Al labels and identifiers
nmust be declared before they are referenced. The following two
exceptions are however allowed.

1) The type identifier in a pointer type definition.
2) Procedure and function calls when there is a forward reference.

The statenent part specifies the actions to be taken when this
procedure is activated

If a procedure is referenced before its declaration appears, then a
forward declaration must be made before the reference. The genera
format is

<procedure headi ng> forward
In this case a paranmeter list (and result type for the case of

functions) is unnecessary at the actual procedure declaration.

9.1. Standard procedures

9.1.1. File handling procedures

In the following, the paraneter f is a variable of file type

1) reset(f) resets the buffer variable of f to the beginning of the
file. eof () becones false if f is non-enpty;
otherwise, f@is undefined and eof (f) becones true. It

cannot be applied to the standard file input.

2) rewite(f) precedes the rewiting of the file f. The current val ue
of f is replaced with the enpty file. It cannot be
applied to the standard file output.

3) get(f) advances the current file position to t he next

conponent . If no next conponent exists, then eof (f)
becones true and the value of f@is undefined.

32

Pascal 8000 Reference Manual | BM 360/ 370 versi on

4) put(f) appends the value of the buffer f@to the file f.

5) page(f) is applicable only to textfiles. Instructs the printer
to skip to the top of a new page before printing the
next line of the textfile f.

9.1.2. Dynanmic allocation procedures

In the following, the parameter p is the variable paraneter of
poi nter type.

1) new(p) al l ocates a new variable and assigns its pointer
reference to the pointer variable p. If pis of
record type with variants, then the form

2) new(p,tl,...,tn) can be used to allocate a variable of the variant
with tag field values tl1...tn. The tag field
val ues nust be listed contiguously and in the

order of their declaration. Note that the use of
"new' with tags actually assigns the record tags
with the values tl1l...tn; no further tag assi gnment
is necessary. NOTE. This schene of automatic tag

assignment differs from the description in the
manual by Jensen and Wrth. It also differs from
the Cyber inplenmentation of Pascal. However, the
authors believe that it is the correct approach,
and the wuser mmy choose to nmake explicit tag
assignments anyway i f he/she so desires.

3) mark(p) A pointer variable p is set to point to the
current end of the area allocated for the
dynam cal |y generated data.

4) rel ease(p) The end of the area currently occupi ed by
dynam cally generated data is reset to the place
pointed to by p, so that the dynamcally allocated
area beyond the place pointed to by p is rel eased.

9.1.3. Data transfer procedures

pack(a, i, z) neans

for j:=u to v do
z(.i.) :=a(.j-uti.)
unpack(z, a,i) neans

for j:=u to v do

a(.j-u+i.) :=z(.i.)

33

Pascal 8000 Reference Manual | BM 360/ 370 versi on

where a is an array variable of type

array (.m.n.) of t

and z is a variable of type

and i, j,

packed array (.u..v.) of t
u and v are of type integer.

Note that the bounds on i are:

m<=1i <= u-v+n

Run-ti me bounds checking on variable i is optionally perforned by

the conpiler.

9.1.4. Further standard procedures

In the followi ng, the parameter s is the variable paraneter of type

al fa

1) tine(s)

2) date(s)

3) nessage(x)

4) halt

gives the current tinme in the form hh:mmss, where hh
denotes the hour, nmm denotes the mnute and ss the
second.

gives the current date in the form dd/miyy, where vyy
denotes the last tw digits of the year, nmthe nonth
and dd the day of the nonth.

The string x is witten into the joblog. X shoul d
contain at nost 80 characters.

term nates the execution of the program and issues a

post-nmortem dunp if the program was appropriately
conpil ed(i.e. using the $P+ option).

34

Pascal 8000 Reference Manual | BM 360/ 370 versi on

10. FUNCTI ON DECLARATI ONS

Functions are subroutines which yield a single scalar or pointer
val ue

<function declaration> ::= <function headi ng> <bl ock>
<function heading> ::= function <identifier> : <result type> ;
function <identifier>
(<formal paraneter section>
~,<formal paranmeter section>0) : <result type>;
<result type> ::= <type>

At | east one assignment to the function nust appear in the statenent
part of the function declaration.

10.1. Standard functions.

10.1.1. Predicates

In the following, the parameter x is <called by value, and the
paraneter f is called as a variabl e paraneter

1) odd(x) x is of type integer. The result is trueif x is odd
and false if x is even.

2) eof (f) f is of file type. The result is true if f is in an end-
of-file state. It cannot be applied to the standard

files input and output.
3) eol n(f) f is of file type. The result is true if f is in an end-

of-line state. It cannot be applied to the standard
files input and output.

10.1.2. Arithmetic functions

1) abs(x) Absol ut e val ue of the nunber x.
2) sqr(x) Square of the nunber x.

3) sqrt(x) Square root of the nunmber x.

4) exp(x) Exponenti al function e**x.

5) I n(x) Natural |ogarithm of x.

6) sin(x) Tri gononetric function.

7) cos(x) Tri gononetric function.

35

Pascal

8) arctan(x)

2),

8000 Ref erence Manual | BM 360/ 370 versi on

I nverse trigonometric function.

The paraneter x 1is called by value. The type of x may be real or
i nt eger.

and rea

The type of the result is the sane as that of x for 1) and
for 3)-8).

10.1.3. Transfer functions

1) trunc(x)

2)

3)

4)

10.

1)

2)

3)

4)

In the followi ng, the paraneter x is called by val ue

round(x)

ord(x)

chr (x)

1.4. Further

x is of type real, and the result is the truncated value
of x.

x is of type real, and the result is the nearest integer
to x.

x is of any sinple type, except real, and the result is
the integer value associated with x.

x is of type integer, and the result is the character
whose associated value is x, if it exists.

standard functions

In the followi ng, the paraneter x is called by val ue

succ(x)

pred(x)

cl ock

card(x)

x is of any sinple type, except real, and the result is
the successor to x. It is undefined if one does not
exi st.

x is of any sinple type, except real, and the result is
the predecessor of x. It is undefined if one does not
exi st .

yields an integer value equal to the central processor
time, expressed in mlliseconds, already used by this
j ob.

X is of set type. The returned result is the cardinality

of x (i.e. the nunber of elenments contained in the set
X) .

36

Pascal 8000 Reference Manual | BM 360/ 370 versi on

10.1.5. The "type-change" function

A type changi ng function has been introduced. The nmechani sm provi ded
by t he standard functions ord and chr has been extended, and
any <type identifier> can be used to change the type of an expression,
with the expression result remaining unchanged. The type-change
functi on has one argunent, of any type. Note that the argunment nay not
be a constant.

Exanpl e: var name : packed array (. 1..4 .) of char;
ebcdi c: integer;

begi n
nane := 'fred';
ebcdi c: = i nt eger (nane)
end;

NOTE: The type change function can create havoc in a programif used
incorrectly. It is recommended for use by advanced progranmmers only.

37

Pascal 8000 Reference Manual | BM 360/ 370 versi on

11. I NPUT AND OUTPUT PROCEDURES

Four standard procedures, read, readln, wite, and witeln are
provi ded as the usual and convenient facilities for input and output.
They are applied to files of type text, besides the standard files input
and output, and further, procedures read and wite may be applied to
files of any type.

11.1 The procedure read

The general format is
read ([f,] vi,v2, ... vn)

where f is an optional filenane. |If f is omtted, the standard file
input is assuned. vli,v2 ... vn are variables of type integer, real
char, or packed array (1..n) of char when f is of type text. Wen f is
not of text type, then vi,v2 ... vn should be of types equivalent to the
conponent types of f.

The above read statenent is equivalent to:

begin read([f,]v1l); ... read([f,]vn) end

11.1.1. f of type text

If vis of type char, then read(f,v) is equivalent to

begin v:=f@ get(f) end

If a paranmeter v is of type integer or real, a sequence of characters
which represents an integer or real nunber is read into v (that is,
free-format input). Consecutive nunbers nust be separated by blanks or
end- of -l i nes.

If a paraneter v is of type packed array (. 1..n .) of char, the
specification of the read procedure is extended to

read ([f,] v [:m])
where mis an integer valued expression. For this form the follow ng

cases need to be considered, given that the remaining I ength of the
i nput record is r.

1) if nis not specified, and n>, then r characters will be read
into v, and n-r blanks inserted to pad v to the right. The
i nput pointer now points to the end of the input record.

38

Pascal 8000 Reference Manual | BM 360/ 370 versi on

2) if mis not specified, and n<=r, then n characters wll Dbe
read into v and the input pointer noved up by n characters

3) if mis specified, then replace n by min(n,n) in 1) and 2)
above.

11.1.2. f of non-text type

If f is not of type text, then read(f,v) is equivalent to

begin v:=f@ get(f) end

11.2. The procedure readln

The procedure readln is identical to read except that, after reading
the values into the variables, it skips the remainder of the current
record, and the pointer f is positioned at the beginning of the next
record. readln may only be applied to text files.

11.3. The procedure wite

The procedure wite has the follow ng general format:
wite ([f,] pl,p2, ... pn)

where f is a file of any type, and pl,p2 ... pn are the paraneters of
the form defined below. The above is equivalent to

begin wite([f,]pl); ... ; wite([f,]pn) end
If f is atextfile, then wite appends character strings (one or nore
characters) to the textfile. |In this case, the general format of the
paraneters pl,p2 ... pn is either one of
e e:m e:mn

where e is an expression, the value of which is to be witten out. The
type of the expression e nmay be one of:

bool ean i nt eger rea
char packed array (.1..p.) of char
mand n are integer val ued expressions, where m denotes the nunber of

colums for e wth preceding blanks, and n specifies the fraction
length if e is of type real

If the value e requires less than m characters for its
representation, then an adequate nunber of blanks is issued so that
exactly mcharacters are witten, with the value right justified. | f

39

Pascal 8000 Reference Manual | BM 360/ 370 versi on

the nunmber of characters required to represent e exceeds m then the
specified field width is expanded to enable the full value of e to be

witten. Wen m is not explicitly specified, the follow ng default
val ues are enpl oyed:

type default m
bool ean 4 or 5
i nteger 12

real 24
char 1
string I ength of string

If eis of type real, a decimal representation of the nunber e is

witten on the file f, preceded by an appropriate nunber of blanks. If
the paraneter nis missing, a floating-point representation consisting
of a coefficient and a scale factor will be chosen (E - type output).

O herwise, a fixed point representation with n digits after the decim
point is obtained (F - type output).

If the file f is not of type text, then
wite (f,p)
is equivalent to

begin f@:= p; put(f) end

11.4. The procedure witeln

The procedure witeln is entirely the sanme as wite, except that,
after witing out the value of the expression, an end-of-line marker

will be witten. Note that witeln my not be applied to non-text
files.

40

Pascal 8000 Reference Manual | BM 360/ 370 versi on

11.5. Printer-control characters

If atext fileis to be sent to the printer, the first character of
each line is interpreted as a control character by the printer, and is
not printed. The control characters are interpreted as follows:

char act er action
C no line feed (overprinting)
Bl ank si ngl e spacing
‘0’ doubl e spaci ng
= triple spacing
U new page before next line of printing

41

Pascal 8000 Reference Manual | BM 360/ 370 versi on

12. PROGRAMS

A Pascal program consists of a program headi ng and a bl ock, possibly

with a variable initialisation part. A nane follow ng the synbol
programis a user programnanme , and it has no further significance in
the program Program paraneters are the names of the external files

used in the program The outernopst variables nmay be initialised by the
variable initialisation part.

<prograne ::= <program headi ng>
<l abel declaration part>
<constant definition part>
<type definition part>
<vari abl e declaration part>
<variable initialisation part>
<procedure and function declaration part>
<statenent part>

<program headi ng> ::= program <i dentifier>

[(<program paraneters>)]
<program paraneters> ::= <file variable> 7, <file variabl e>0
<variable initialisation part> ::= value <variable initialisation>

“;<variable initialisation>0 | <enpty>

Exanpl e: programwiteout(filel, output);
var filel : file of integer; b : integer;
begin reset (filel);
while not eof (filel) do
begin b:=filel@ witeln(b);
get(filel)

end

end.

42

Pascal 8000 Reference Manual | BM 360/ 370 versi on

ACKNOWNLEDGEMENTS

In the original report from the University of Tokyo(H kita and
I shi hata, 1976), the foll owi ng acknow edgenent was i ncl uded:

"We are grateful to the many people who assisted us in various ways
during the work. Qur conpiler is based on Dr. H H Naegeli's "trunk"
conpiler, which Professor T. L. Kunii arranged to be sent to wus. Qur
special gratitude goes to Professor H Ishida of the Conputer Centre
for his supervision and support of the project, to Professor E. Goto
for his supervision, and to M. M Yasunura, our previous coworker (now
at UCLA), for his contribution to the work. The inplenentation is done
as a cooperational research project with the Conputer Centre."

The Australian authors are very grateful to Professor Teruo Hikita

and his co-workers, for supplying their conpiler on which the |BM
360/ 370 version is based.

W also acknow edge hel pful discussions with staff in the Conputer
Sci ence departnments of the University of New South Wales and the
University of Sydney. W also thank the Sydney Water Board for
generously giving us access to their conputer centre to enable testing
under the SVS and MVS operating systens to be carried out.

43

Pascal 8000 Reference Manual | BM 360/ 370 versi on

APPENDI X 1 Conpil er features

1. Listing Fornat

Conpiled prograns are listed in an environnent designed to provide
useful information to the programmer about program size and structure.
Further, several options are available to control the listing produced,
as well as to select options that affect conpilation.

Headi ng: Each page is headed by one line, indicating the version of
Pascal that is currently executing, the date and tinme of conpilation,
as well as a page nunmber. A title is also printed, if one has been
defi ned.

Li sting: Consider the follow ng exanple

PASCAL 8000/2 AAEC (01 JULY 77)

0630 -- PROGRAM PUT3(QUTPUT); (*TH S SHOULD PRI NT ' 3' *)
0630 -- VAR | : | NTEGER;

0634 -- A FUNCTI ON DUMWY : | NTEGER

0000 00 A BEG N DUMMWY = -1 END;

001C -- A PROCEDURE P(FUNCTI ON F: | NTEGER) ;

0048 - - VAR L : | NTEGER;

004C -- B FUNCTI ON R: | NTEGER;

0000 O0- B BEGN (* R*)

000A - - R =L; (* SHOULD PASS VALUE OF L BOUND *)
0012 -0 B END; (* WHEN R WAS PASSED AS A PARAMETER*)
0000 0O- A. BEGN (* P *)

000A - - | =1 +1; L :=1;

001E -- IF 1 =3 THEN P(R)

0036 - - ELSE IF | =5 THEN WRI TELN(" ', F)

008E - - ELSE P(F)

009C -0 A END;, (* P *)

0000 O- BEG N

000A - - | := 0;

0010 -- P(DUMWY)

001C -0 END.
* AAEC PASCAL COWPI LATI ON CONCLUDED *
*NO ERRORS DETECTED | N PASCAL PROGRAM *

The four hexadecinmal digits on the side of the page indicate the
rel ati ve addresses of variables, data and code, wherever appropriate.
Wiile variables are being declared with the var construct, the hex
address will reflect the relative offsets fromthe start of the stack
for the procedure being conpiled. (A fixed anount of space is required
for each procedure before variables can be allocated, and this is
40(hex) bytes.)

44

Pascal 8000 Reference Manual | BM 360/ 370 versi on

For statenents, the hexadecimal address indicates the relative
offset fromthe start of the code for that procedure. The val ue shown
is the offset at the start of each line of listing, before code has
been generated for that |I|ine of Pascal source. These relative
addresses are nost useful for determining the size of procedures, as
well as for relating to post-nortem dunp information.

The next two indicators are known as nest |evel indicators, and
reflect the static block structure of a procedure. The left indicator
is increnmented, and printed, whenever a begin, |oop, repeat, or case is
encountered. On ternination of these structures, with an end or until,
t he right indicator is printed, and the static Ievel counter
decremented. This scheme nekes it very convenient to match begin - end
pairs, while quickly pointing to missing end termnators. A correctly
conposed procedure should comence with a zero left indicator and
termnate with a zero right indicator.

The character that follows the nest indicator reflects static

procedure |evels. The character is updated for each nest level ('A
for level 2, "B for level 3, etc) and printed next to the heading and
the begin and end associated w th that procedure. It is therefore

possible to see at a glance the static |evel nesting of each procedure.
This indicator is also useful in finding nmissing end term nators.

The input Pascal source line is printed follow ng these indicators.

Each line of source text is printed exactly as read. Blank input |ines
appear as such.

2. Listing contro

There are several options available for the programrer to contro
his output listing. These are indicated to the conpiler by a '$
character in colum one of +the source input record, imediately
followed by the option keyword. '$option' cards are not printed on the
output listing. The options available are:

$title <title> replaces the title currently printed (if at all) wth
<title> and then skips to a new page. The title is
printed at the top of each page, until a new $title
record is encountered, or an $untitle record is found.
Only the first 40 characters of the supplied title are
rel evant.

$ej ect causes the next line of listing to appear on a new page
(unless that line is $untitle)

$space n n blank lines are printed in the programlisting

$untitle compi | er-generated page skipping, and titling, is
suppr essed.

45

Pascal 8000 Reference Manual | BM 360/ 370 versi on

3. Conpiler options

Several conpiler options are provided in order to control the nodes
of conpilation. Conpiler options are specified by the first part of
any comment. The general format is as foll ows:

(*$x+,y-, ... <any conment> *)
where Xx, vy, ... are the conpil er options described bel ow, and the
synbol '+' neans the activation of the option, and the synmbol '-' neans

the suppression of the option. The specification of options nay be
inserted anywhere in the program so that users can control the code
generation selectively over specific parts of a program

Conpi | er opti ons.

C i ndi cates that the object code produced by the conpiler
should be listed in assenbly |anguage format. The
default value is '-'

L i ndi cates that the source program should be Ii sted. The
default is '+'.

T i ndi cates that code to provide run tine checking should
be generated. Exanples of checking include:

1) assignment of values to variables of type
<subr ange>.

2) ensuring that array index operations are wthin
t he bounds of the array as specified.

3) ensuring that case statenment selection falls
within the real mof one of the case tags.

The default value is '+'.

U restricts conpilation to the first 72 colums of the
i nput record. The remminder of the record is effectively
ignored, but listed by the conpiler. The default val ue
is'-', and the first 120 colums are relevant.

P instructs the conpiler to produce the code necessary to
generate a traceback and full post-nmortem dunp of | ocal
variables if an execution error were to occur. The

default is '+'.

N instructs the conpiler to produce the code necessary to
generate a traceback (wi thout dunp of variables) if an
execution error were to occur. (l'i nkage-editor version

only). The default is

46

Pascal 8000 Reference Manual | BM 360/ 370 versi on

S the compiler wll flag with a warning nessage al
constructs that are not 'Standard Pascal'. The default
i S] - 1

4. Conpil ation error nessages

Errors detected by the conpiler during conpilation of a Pasca
program wll be flagged both by an error nunber and an error nessage.
The erroneous line will be nmarked with an '@ pointing to just past the
synbol in error on that line in the Iisting.

A log of conpile-tine error nmessages that may have been generated
throughout the program is printed at the conclusion of conpilation.
The conpiler will print the text for each message only once, no matter
how many occurrences of that error nunber appeared.

Prograns that have conmpiled with errors cannot be executed

5. Execution sumary

In all cases where the runtinme system conpl etes execution normally
(with or without Pascal errors) without a system abend, an execution
summary of all steps is output to the SYSPRINT dataset. This gives the
time taken for each step, plus an indication of the main storage used
by the program the stack and the heap for that step. Use of main
storage for the runtime system system|/O control blocks and other
sundry operating systemrequirenments is not included in this sumary.
Partitioning of storage into stack and heap usage may not be accurate,
as it is determined by initialising the stack-heap area before the
step, and considering the |largest area renmining untouched after the
step to be the unused area between the stack and the heap. Step timng
i ncl udes the overhead of performing this initialising and exam nati on.

6. Post nortem dunp

If any error condition is detected by the Pascal runtine system
execution term nat es, and after printing the execution summary
descri bed above, the nature of the error is printed, followed by a
post-nortem dunp of the segments (procedures or functions) which were
active at the time of the error. Only the innernost nl and the
outernbst n2 segnents are dunped, together with a count of the ones
omtted. nl and n2 both default to a value of 5, but they my be
changed separately through the PARMfield on the EXEC card. O fsets
fromthe start of each segnent to the call of the next or the |location
of the error are printed in hexadeciml, and may be related to the
addresses printed on the left of the conpiler listing of the relevant
segnent.

Wthin each segnment, a local variable dunp is provided if the $P+
option was specified (or inplied by default) for conpiling that

47

Pascal 8000 Reference Manual | BM 360/ 370 versi on

segnent. Variables included in this dunp are all those of types
i nteger, real, char(EBCDI C character enclosed in quotes printed), alfa
(8 characters enclosed in quotes printed), boolean (<TRUE> or <FALSE>
printed), user-defined scalar variables (ordinal value followed by (9S)
printed), and pointer (hexadecinmal value or <NIL> printed). Arrays
(except alfa), sets and other user-defined structures are not included
in the local variable dunp.

Al stack and heap space is initialised at the start of a Pasca

program execution so that all bytes contain x'7f'. |If a local variable
is found to contain this value, it is printed as <UNDEFI NED>. Not al

undefined variables wll be printed in this way however, as stack
initialisation is done at programstart tine rather than at segnent-
start tine. Thus if a segnent call uses an area of stack which has
been previously used by another segnment, its local variables wll be

initialised to seeningly randomrather than 'undefined' val ues.

Error conditions which cause termnation are of several types
Errors such as conpile-time errors and program |l oading errors do not

give the traceback dunp. Errors such as val ue out of bounds, stack
overflow or time overflow give a sinple nessage followed by the
traceback. Errors in using the file-systemin an incorrect way give a

message including the file-name referred to, followed by the traceback.
Errors in calling a standard function with a value out of range give a
message including the incorrect argument value, followed by the
traceback. Programinterrupts are trapped by the runtine system and
cause termination of the run, usually with a traceback. An initia
printout for the interrupt gives the programold psw, the genera
regi ster values and an indication of whether the interrupt occurred in
conpiled code or in the runtinme system Storage contents surrounding
the point of interrupt are printed if the interrupt is fromconpiled
code, and the traceback as for other errors is then given. If the
environnent of the interrupt cannot be determ ned, a system abend is
given with code 000

At the start of a step, the CPU time remaining for the job is
determned, and a trap is set for about 10 seconds before this tine
expires. Wien this trap is sprung, an error nessage, followed by the
post-nortem dunp is printed. At this tinme, any local files which were
open are closed and scratched. (At the tine of witing, this does not
work on SVS and MWS systens, and CPU tine expiry results in a S322
abend on these systens.)

O course the printing af the post-nmortemdunp relies critically on

the integrity of the stack after the error has occurred, and a correct
print-out may not be obtained if the stack has been corrupted. St ack
corruption wll rarely occur if the $T+ option is used. |If stack

corruption causes a programinterrupt while trying to print a |loca
vari able dunp, the dunp for that segnent is abandoned, and the next is
attenpted. |If stack corruption is detected while trying to trace
segnent calls, the whole traceback is abandoned.

48

Pascal 8000 Reference Manual | BM 360/ 370 versi on

The post-nortem dunp capability has proved nost useful when
debuggi ng Pascal prograns. It is at its nost useful when used with the
$P+ and $T+ options (which are the default), although these incur
slight storage and execution speed penalties. The $P+ option incurs a
time penalty of one instruction execution per segnent call and a space
penalty of 12 bytes per segnent plus 12 bytes per local variable. The
$T+ option incurs a time penalty of 5 machine instructions and a space
penalty of up to about 26 bytes per bounded vari abl e assi gnnent, per
array subscript evaluation, per case statenent and per pointer variable
ref erence.

7. M scel | aneous

1) The external file name "output"” does not have to appear in the
"progrant paraneter list, unless operations on the file "output”
are to be perforned.

2) External files do not have to be declared at level one in a
program but nmay be declared in procedures at any level. All the
conventions regarding local files are applicable to external files,
and further, a DD card designating a dataset is required for each
external file referenced in the "program' paraneter |ist.

3) The maxi mum anmount of code that can be generated for each procedure
is calculated by the formula:

codemax = 4 * (7-level)k bytes

Thus, the maximum of code that nmay be generated for the main
programis 24k bytes. The nechanism of inplenentation of this
extended addressing feature involves the use of spare 'display
registers'. Sonme of the registers are also used for optimsation
of the 'with' construct, as they can be used to store the base
address of records currently being referenced.

49

Pascal 8000 Reference Manual | BM 360/ 370 versi on

APPENDI X 2. Fil e support

1)

2)

3)

4)

5)

6)

Files nmay be external or local. External files are naned in the
program header; local files are not.

Both external and | ocal files nmay be declared in a procedure at any
level. Systemcontrol blocks are allocated for a file on the stack
when the procedure containing the file declaration is invoked

Buffers are allocated on the stack when the first reset or rewite
to the file is issued. These areas are not however accessed
directly fromthe procedure's display register

External files are referred to by providing a DD statenment which
uses the filename as the ddnanme, except that the standard files
i nput and out put use the ddnames SYSIN and SYSPRINT respectively.
Any DD statenment supported by the QSAM access net hod may be used.

If local files are used, a DD statenment with a ddnane of 'LOCAL'
must be provided. This statenent should refer to a direct-access
vol unme containing sufficient free space to hold all local files
required. It will usually be of the form

/1 LOCAL DD UN T=SYSDA, DI SP=SHR, VOL=SER=vol ser

Current inplenmentation restrictions for local files are that no
secondary extents may be taken, and all local files have an equa
primary space allocation quantity. The primary space allocation is
taken from the SPACE paraneter on the LOCAL DD statement if it

exists, otherwise a default value of 5 tracks is wused. If DCB
paranmeters are specified on the LOCAL DD statenent, these nust be
suitable for all local files used. DSNAME nust not be specified on

the LOCAL DD st atenent.

If a long-junp or external junp is made to an outer procedure in a
situation where files have been opened in internedi ate procedures,
then these files are correctly closed, and if local, are scratched
at the time of the | ong-junp.

If premature termination of a programfor any reason causes the
printing of a 'Pascal Termination Log', then all files which were
open are closed, and if |ocal are scratched. If a system abend
occurs, the files are not closed and any local files in use wll
remain allocated on the disk. Note that the time-limt condition
is intercepted and local files are scratched. However, operator

cancel, open failure or getmain failure, for exanple, wll cause
system abends, and may |leave local files allocated. The
possibility of getmain failure is particularly wor t hy of
consideration; if a large nunber of local files are opened, enough
space rmust be left outside the Pascal stack to build their system
I/O blocks and channel prograns. Space required for these is

usual Iy of the order of 100 bytes per buffer per file (2 buffers
per file default).

50

Pascal 8000 Reference Manual | BM 360/ 370 versi on

7)

8)

9)

10)

11)

I npl emrentation of local files is achieved through use of the DASD
al location and SCRATCH functions of OS. DASD allocation is done
using SVC32 in the sane way as it is used by the IEHMOVE wutility
program A uni que dataset name is constructed for each used |oca

file as follows: the dsnane generated for the LOCAL DD statenent
by the operating systemhas the form

SYSyyddd. Thhnmrss. xxnnn. j obnanme. Rnnnnnnn

where yyddd and hhnmss are the date and tine of job initiation, xx
is variabl e depending on the environment, nnn is a serial nunber,
jobnane is the name of the job, and nnnnnnn is a serial nunber.
Through its use of variable fields, this nane is different from al
others in the operating system Each local file is given a unique
name built from this name by replacing the jobnanme field with
Pnnnnnnn where nnnnnnn is a local file serial nunber. These
dsnanes still appear as tenporary datasets to the operating sysem
and thus if any are inadvertently left allocated on the disk by
premature termination of a job, they should in due course be
scratched by whatever neans is used by an installation to renove
ol d tenporary datasets.

An external file may be declared in nore than one procedure or in a
procedure that is invoked recursively. This will not normally be
useful, but the effect wll be that file positioning wll be
mai ntai ned for the outer procedure during its use by an inner one.
If the file is used for output, the results are unpredictable.

A distinction is made between files of type "text" and files of
other types. Both types are supported with the QSAM access net hod;
text files wusing get-locate and put-locate, and non-text files
usi ng get-nove and put-nove

For non-text files, support is provided for RECFM=F, FB or FBS
For input, the LRECL or BLKSIZE for RECFMEF nust match the record
size inplied by the file declaration. For output, if RECFMis not
specified, it is set to FB; LRECL (or BLKSIZE for RECFMEF) is set
to the size inplied by the file declaration. For RECFM=FB or FBS
if BLKSIZE is specified it nmust be a multiple of LRECL; if not
specified it is set to the lowest nultiple of LRECL greater than or
equal to 2000.

For text-files, support is provided for all valid conbinations of
fixed, wvariable or undefined RECFM wi th bl ocked, standard, spanned
or ASA control. Valid conbinations are represented by F[B][S][A]

VI[B][S][A] or UA]. The logical record length (or blocksize if
RECFMis U or not B) may be specified and may not exceed 256. | f
LRECL is not specified, it is set to 132 + (1 if RECFMEA) + (4 if
RECFM=V). |If RECFMis not specified, it is set to RECFM:=VBA | f

RECFM=B and bl ocksize is not specified, it is set as for non-text
files to the lowest multiple of LRECL not |ess than 2000. An
exception to this rule is that for SYSIN, the default LRECL is 80.

51

Pascal 8000 Reference Manual | BM 360/ 370 versi on

12)

13)

For output to a text file with RECFM=A, the carriage control
character position is accessible to the user, and should nornally

be filled with a bl ank. The "page" function wll cause the
character witten in the control position to be overwitten at the
time the record is witten. If a text field being witten overruns

the end of the record, the excess is placed on the follow ng
record.

For input froma text file with RECFM=A, the carriage control

character wll be read by the user as the first character of each
record.

52

Pascal 8000 Reference Manual | BM 360/ 370 versi on

APPENDI X 3. Linking to External Procedures.

The |inkage editor version of the Pascal 8000 system produces
obj ect code follow ng the specifications of the IBMIinkage editor.
Separately conpi | ed Pascal nodules can therefore be |inked
together, and can link to object nodul es produced by ot her |anguage
conpil ers, such as the FORTRAN conpiler, or to nodul es produced by
the 1 BM Assenbl er.

1. How to specify that a nodule is external

If a procedure or function that has been devel oped i ndependently
of the <current conpilation is to be invoked, it nust first be
decl ared by the standard procedure/function heading, followed by
the word "pascal" or "extern" (if the external routine is witten
in Pascal) or "fortran" (if the routine is witten in FORTRAN or
foll ows the FORTRAN ar gunent passi ng conventions).

Exanpl es:
procedure plotxy(var x,y:real); fortran;
function rand(x:integer) : real; fortran;

Once an external routine has been declared in such a manner, it
may be used in the sane way as ordinary Pascal procedures and
functions, with sone restrictions detail ed bel ow.

It should be noted that the standard |BM defined paraneter
passi ng mechanism is used when invoking FORTRAN or Assenbler
routines (detailed in the |IBM FORTRAN Programmers Guide). The
external reference generated is to a CSECT with the nane of the
procedure truncated (or padded) to eight characters. Thus, in the
above exanple, the |inkage editor would expect to find externa
modules with the nanes "rand" and "plotxy", and will resolve all
references to them

2. Externally conpiled Pascal procedures and functions.

There are no restrictions to the form that an externally
conpi |l ed Pascal procedure or function may take. The argunent lists
and function results are treated in exactly the same way as with
"internally" compiled routines, and all scope rules apply as
regards the use of the procedure nane.

There are, however, certain rules that nust be followed in order
to actually conmpile an external nodule. These are:

1. The (*$E+*) option nust occur before a procedure decl aration
This signifies to the conpiler that the first procedure follow ng
is to be conpiled as an external nodule, and that there will be no

further procedures or "nmain-body" after this procedure definition.

53

Pascal 8000 Reference Manual | BM 360/ 370 versi on

2. "val ue" statenents are obviously not pernitted. However,
gl obal type, constant and variable declarations are all owed.

3. Only one "l evel one" procedure declaration and body is allowed
per conpilation i.e. that of the procedure which is to be regarded
as external. However, the external procedure may have many |evels

on nested internal procedures within itself, and the wusual syntax
rules apply to these.

4. No "main progrant, i.e. a dummy begin ... end. , is to be
specified. This would serve little purpose.

It should also be noted that an externally conpiled procedure
may have references to further externally conpiled routines wthin
it; norestrictions are inposed in this regard. Further, the
externally conpiled routine may be invoked recursively fromwi thin
itself and fromw thin any nested procedure declared within itself.
The external procedure nay al so be passed as an argunment to any
nested procedure, with the usual scope rules applying

Exanpl e.

(*$E+*)
pr ogr am ext ernal (out put);
procedure incr (n:integer);

procedur e addto5(procedure g(integer));
begi n

g(n+1)
end;

begi n
if n<>5then addto5(incr) else witeln(n);
end;

This externally conpiled procedure may be i nvoked by the program

programcal lit

procedure incr(n:integer); pascal;
begi n

incr(l)
end.

Externally conpiled procedures may access the gl obal variabl es
of the calling program as long as these are declared in exactly
the same order in both the external and calling routines. This
feature is useful when several separately conpiled routines wish to
access a common set of variables without passing all of them to

54

Pascal 8000 Reference Manual | BM 360/ 370 versi on

each routine as argunents.

Note that once the (*$E+*) option has been set, it may not be
reset, and such attempts will be trapped by the conpiler. Further,
procedures and functions cannot be passed as argunent s to
external ly conpiled routines.

55

Pasca

3. Ex

| 8000 Reference Manual | BM 360/ 370 versi on

ternally conpil ed FORTRAN and Assenbl er routi nes.

The linkage-editor version of Pascal 8000 permits |inking
bet ween Pascal programs and any routine that conforns to the |BM
FORTRAN calling sequence and argunment passing conventions. Such
routi nes can behave as procedures or functions, wth function
return types of real, integer and bool ean being perm ssible.

When wusing arguments passed to external routines, one nust be
aware of the internal representation of the standard types. Thi s
is given in the follow ng table.

type byt es conmmrent

i nteger |4

bool ean | 4 l=true, O=fal se (sane as | BM FORTRAN)

char 4 EBCDI C code in | ow order byte

real 8 I BM fl oating point representation

set 8 bits representing elenments, starting fromleft

scal ar 4 ordi nal value of occurrence, starting at 0O

For exanple, if a FORTRAN routine is called with a rea

argunent, the argunment should be declared as DOUBLE PRECISION in
the called routine. "Packed" structures are represented by single

Exanp

X
a .

b :
c :

byt es when the value of the packed itemis in the range zero to
255.

| es.
. integer; (* 4 bytes *)
packed array(.1..4.)
of char (* 4 bytes *)
array(.1..4.) of char (* 16 bytes *)
real (* 8 bytes *)

56

Pascal 8000 Reference Manual | BM 360/ 370 versi on

APPENDI X 4. How to Run the System

1. The conpil e-and-go system

The load nodule PASCAL, fromfile 2 of the tape, works as the

Pascal systemdriver. It has no specific know edge of the Pasca
conpiler; it nerely provides a running environnent for prograns
conmpiled by the conpiler - the conpiler itself being one such
program This programrequires a SYSPRI NT dataset for its standard
out put . This dataset should have a wusable print width of 133

characters, including carriage control, and it may have a a RECFM
of UA, VA VBA FA or FBA. If no DCB paraneters are specified,

the default of RECFM=VA, BLKSI ZE=141, LRECL=137 is used. If loca

files are to be used a LOCAL dd statenent is also required. This
shoul d have the form

/ 1 LOCAL DD UN T=3330, DI SP=SHR, VOL=SER=vol ser

If it is undesirable to nmention a specific volunme on this card, it
coul d be repl aced by:

/1 $LOCAL DD UNI T=SYSDA, SPACE=(TRK, 0)
/1 LOCAL DD VOL=REF=*. $LOCAL, DI SP=SHR

O her datasets required are determ ned by the contents of the PARM
field passed to the program The conplete specifications of the
PARM field, which may not contain any bl anks, are as foll ows:

PARME[Nn1] [,n2] [,] stepl[=sl1] [,step2[=s2]]
[,step3[=s3]] etc

wher e t he square brackets denote optional paraneters. The
st epnanmes stepl, step2 etc. are synbolic names given to Pasca
programs which are to be run under the Pascal system Each nust
consist of 1 to 7 characters, and nust otherw se obey the rules for
constructing ddnanes. Three ddnames are associated wth each
stepname - by appending the synbols 1, 2 and | respectively to the
stepnanme. The Pascal program | oader accesses the first two of
these, and they nust describe the two datasets produced by the
conmpil er when it conpiled the programwhich is to be run. The
first of these nust have the attri butes DCB=(RECFM=F, BLKSI ZE=1024)
(it may not have RECFM=FB), and the second is a text-file and
usual ly has the attributes DCB=(RECFM=FB, LRECL=8) wi th any suitable

bl ocksi ze. The third ddname describes a textfile containing the
standard input file for the conpiled program and nust be present
if '"INPUT" is specified in the programheader of the conpiled

program |If a Pascal program perforns a reset or rewite to any
external file name, then a ddnanme the sanme as this file nane nust
al so be provided to refer to the external file.

57

Pascal 8000 Reference Manual | BM 360/ 370 versi on

For exanple, the Pascal conpiler itself is a Pascal program and
if referenced by the stepnane "CMP", needs the follow ng ddnanes:

CWwP1, VP2 descri be the object code

CWPI descri bes standard input to the conpiler and should be
t he textfile containing the source program whose
conpilation is desired. (Text files may have a record
format of F, FB, V, VB, or U and a |logical record | ength

up to 256).
$PASOBI 1, These are external file names known to the conmpiler, and
$PASOBI 2 on which it produces the object code for the source
program given on CMI. They may describe tenporary

datasets if a conmpile and go run is desired; they may
describe permanent datasets if the conpiled programis
to be saved.

$PASMSGS This external file nane is a textfile on which the
conpi |l er expects to find error nmessage texts if it needs
t hem
Thus if a following step is given the nanme "$PASOBJ", it will |oad
and execute the programjust conpiled. Standard input, if any, for
this programw || be accessed via the ddname "$PASOBJI".

The optional paraneters sl, s2 etc after each stepnane are used to
control the main storage usage for each step. Each nmust be a decinma
i nteger, and describes the anpbunt of storage (in nmultiples of 2K bytes)
which is to be left free during the running of the step. This storage
is required for systemfunctions such as OPEN, CLOSE, ABEND etc. The
remai nder of the storage available wthin the wuser's region is
al l ocated for the conpiled code, the stack and the heap. If this
paraneter is not specified, it defaults to a value of 4 (inplying 8K)
and this has been found to be adequate for nbst purposes at the
authors' installation. It may need to be increased if nore tenporary
storage i s needed for any one systemfunction, or if heavy denands on
permanent storage are nade by the Pascal program- e.g. by opening a
| arge nunber of local or external files (although file buffers are
constructed on the stack, control blocks and channel prograns
associ ated with each buffer are constructed from the free storage).
The control of main storage in this way neans that for nost
applications the conbined stack and heap size is specified by a single
paraneter - the REGQ ON paraneter on the EXEC statenent.

The optional parameters nl and n2 in the PARMfield are decima
integers, and control the printing of the post-nortemdunp if any. The
post-nortem dunp routine, if invoked, prints the environment of the
innermost nl and the outernbst n2 segnents. |If nl and/or n2 is not
speci fied, each defaults to a value of 5.

If any of the defaults for the paraneters nl, n2, or for the free-
storage paraneter s is required to be changed, the change may be
ef fected by changing their values in the nmenber PASDATA in the runtine
system source library, reassenbling the nodule PASCAL in this library,

58

Pascal 8000 Reference Manual | BM 360/ 370 versi on

and relinking the | oad nodul e PASCAL or PASCALO

2. The linkage-editor version.

The | oad nodul e PASCALC, fromfile 2 of the tape, contains both the
runtine system and the conpiled code of the conpiler. This conpiler
and runtine systemis functionally the sane as the conpile-and-go
version, except that the load nmodule is structured differently, and the
format of conpiled code follows the |BM object-nmodule conventions
rather than appearing as the two datasets produced by the conpil e-and-
go versi on.

Dat asets required by this conpiler are not deternined by the parm
field, and are as foll ows:

SYSPRINT a print output dataset, the sane as for the conpile-and-go
version, nornmally SYSOUT=A.

SYSGO descri bes the dataset which will contain the object npdule
produced by the conpiler. This should have DCB attri butes of
RECFM=F or FB, and have LRECL=80, with any suitabl e bl ocksi ze.

$PASMSGS the text file on which error nessage texts are provided and
used by the conpiler in the same manner as for the conpil e-
and- go version

SYSI N the standard input to the conpiler, <containing the source
programto be conpil ed

Wen a conpiled program has been |linkage-edited, it will need the
following fil e-nanes:

SYSPRI NT describes its standard output.
SYSI N describes its standard input.

LOCAL defines a device which may be used for local file allocation,
as for the conpil e-and-go version.

Any external files declared and used by the programw |l require
mat chi ng ddnanes.

2.1 Paranters.

The parmfield nay be used to control the depth of traceback to be
printed in a post-nortem dunp, as well as mmin storage usage. The
specification is as foll ows:

PARM = [n1] [, [n2] [, [S]]]

where each of the paranmeters nl, n2 and s is a decimal integer.

59

Pascal 8000 Reference Manual | BM 360/ 370 versi on

The paraneters nl and n2 control the post-nortem dunp traceback
printout, if any, in the same way as for the conpil e-and-go version.
The paraneter s controls the main storage usage for the jobstep in the
sane way as the paraneters sl, s2, etc do for the conpile-and-go
version. |If an external routine requires a significant amount of nain
storage, this paraneter nmay need to be specified at a value greater
than its default of 4 (inplying 8K). Exanples of routines which nmay
require extra nmin storage are FORTRAN or Assenbl er prograns which
perform|/O (storage needed for buffers), or Assenbler programs which
use the GETMAIN nacro directly or indirectly.

Wen the runtime system of the linkage-edit version initialises
itself, it checks for the presence of the FORTRAN runtine system (using
a weak reference to the external nanme | BCOW). (The FORTRAN runtime
system will be present if an external FORTRAN routine uses any FORTRAN
input/output.) |If present, the runtime systeminitialises the FORTRAN
systemas well, to enable the FORTRAN I/O However, programinterrupts
will be trapped by the Pascal system and a Pascal traceback given
even if the interrupt occurs in the FORTRAN code.

FORTRAN initialisation is perforned using the following sequence of
i nstructions:

L R15, =V(| BCOW)

BAL R14, 64(0, R15)

This works for the G and H versions of FORTRAN under OS Rel ease 21. 8;
it has not been tested in other environnments.

60

Pascal 8000 Reference Manual | BM 360/ 370 versi on

APPENDI X 5. Operating system dependence

"Local " file usage.

To use local files under the MWVS operating system it is necessary
to linkage edit the runtinme systemas an "aut horised program. This is
because DASD space allocation is done using SVC 32, which under WS is
a restricted SVC. Wien used in the foreground under TSO local files
work only if both the runtine systemand the terninal nonitor program
are authorised. Local files work under all other systems w thout any
changes required.

Time limt trap

Wien the runtine systeminitialises itself, a trap is set for about
10 seconds before job-step CPUtine expiry. When a Pascal program
(e.qg. in a loop) springs this trap, a traceback with [ocal variable
dunp is provided. Currently this time-linmt feature does not work
under SVS or WS, and the job proceeds to a S322 abend. This will be
fi xed when the nethod of accessing the tine remaining in the current
job step in these systens is learnt. |IBM Australia cannot help here -
can anyone on the distribution list?

61

Pascal 8000 Reference Manual | BM 360/ 370 versi on

REFERENCES

Dahl, O-J., Dijkstra, E W and Hoare, C A R (1972) ¢ Structured
Progranmi ng. Academi c Press.

Habermann, A N. (1973) ¢ Critical coments on the programm ng | anguage
Pascal. Acta Informatica, 3, 47-57.

H kita, T and Ishihata, K (1976) ¢ An Extended PASCAL and its
I npl ementation Using a Trunk. Report of the Conputer Centre
Uni versity of Tokyo, Vol 5, 23-51.

Hoare, C.A R and Wrth, N (1973) ¢ An axiomatic definition of the

programm ng | anguage Pascal. Acta Informatica, 2, 335-355.
Ishihata, K. and Hkita, T. (1976) ¢ Bootstrapping Pascal using a
t runk. Departnent of Information Science, Facul ty of

Sci ence, University of Tokyo.
Jensen, K and Wrth, N (1974; Second Edition, 1975) ¢ Pascal: User
Manual and Report. Springer.
Kl udgeamus, S. (1976) ¢ Sydney University, private comrunication.
Lecarme, O and Desjardins, P. (1975) ¢ More conmment s on t he

programm ng | anguage Pascal. Acta Informatica, 4, 231-243.
Wrth, N (1971) ¢ The programm ng | anguage Pascal. Acta |Infornatica,
1, 35-63.

Wrth, N (1971) ¢ The design of a Pascal conpiler. Software ¢
Practice and Experience, 1, 309-333.

Wrth, N (1975 ¢ An assessnent of the programr ng | anguage Pascal .
S| GPLAN Notices, 10, 6, 23-30.

62

