

 PASCAL 8000

 IBM 360/370 Version

 for OS and VS environments

 REFERENCE MANUAL

 VERSION 1.2

 1st february, 1978

 Original authors - Hitac version

 Teruo Hikita University of Tokyo
 Kiyoshi Ishihata Japan

 Rewritten for IBM 360/370 Operation

 Gordon Cox Australian Atomic
 Jeffrey Tobias Energy Commission
 Australia

Pascal 8000 Reference Manual IBM 360/370 version

TABLE OF CONTENTS

INTRODUCTION 5

NOTATION - BACKUS NAUR FORM 6

SUMMARY OF EXTENSIONS TO STANDARD PASCAL 6
 1. Constant definition for structured types 6
 2. Variable initialisations 7
 3. Forall statements 7
 4. Loop statements 7
 5. Procedure skeletons 8
 6. Type specifications for parameter and function results 9
 7. Exponentiation 9
 8. Reading character strings 10
 9. Extension of procedures "read" and "write" 10
 10.The type-change function 10
 11.Extended case statement 11
 12.Additional standard procedures 11
 13.Additional standard type 11

LANGUAGE DEFINITION 12

1. VOCABULARY 12

2. NUMBERS, STRINGS AND IDENTIFIERS 13
 2.1 Numbers 13
 2.2 Strings 13
 2.3 Identifiers 13

3. CONSTANT DEFINITIONS 14

4. TYPE DEFINITIONS 15
 4.1 Simple types 15
 4.1.1 Scalar types 15
 4.1.2 Subrange types 15
 4.2 Structured types 16
 4.2.1 Array types 16
 4.2.2 Record types 16
 4.2.3 Set types 17
 4.2.4 File types 17
 4.2.5 Pointer types 18

5. DECLARATIONS AND DENOTATIONS OF VARIABLES 19
 5.1 Entire variables 19
 5.2 Component variables 19
 5.2.1 Indexed variables 19
 5.2.2 Field designators 19
 5.2.3 File buffers 20
 5.3 Referenced variables 20

 2

Pascal 8000 Reference Manual IBM 360/370 version

6. VARIABLE INITIALIZATIONS 21

7. EXPRESSIONS 22

 7.1 Operators 23
 7.1.1 The operator not 23
 7.1.2 The exponentiation operator 23
 7.1.3 Multiplying operators 23
 7.1.4 Adding operators 24
 7.1.5 Relational operators 24
 7.2 Function designators 24

8. STATEMENTS 25
 8.1 Simple statements 25
 8.1.1 Assignment statements 25
 8.1.2 Goto statements 25
 8.1.3 Procedure statements 26
 8.2 Structured statements 26
 8.2.1 Compound statements 26
 8.2.2 Conditional statements 26
 8.2.2.1 If statements 27
 8.2.2.2 Case statements 27
 8.2.3 Repetitive statements 27
 8.2.3.1 While statements 28
 8.2.3.2 Repeat statements 28
 8.2.3.3 For statements 28
 8.2.3.4 Forall statements 29
 8.2.3.5 Loop statements 29
 8.2.4 With statements 30

9. PROCEDURE DECLARATIONS 31
 9.1 Standard procedures 32
 9.1.1 File handling procedures 32
 9.1.2 Dynamic allocation procedures 33
 9.1.3 Data transfer procedures 33
 9.1.4 Further standard procedures 34

10. FUNCTION DECLARATIONS 35
 10.1 Standard functions 35
 10.1.1 Predicates 35
 10.1.2 Arithmetic functions 35
 10.1.3 Transfer functions 36
 10.1.4 Further standard functions 36
 10.1.5 The type-change function 37

11. INPUT AND OUTPUT PROCEDURES 38
 11.1 The procedure read 38
 11.1.1 F of type text 38
 11.1.2 F of non-text type 39
 11.2 The procedure readln 39
 11.3 The procedure write 39
 11.4 The procedure writeln 40
 11.5 Printer-control characters 41

 3

Pascal 8000 Reference Manual IBM 360/370 version

12. PROGRAMS 42

ACKNOWLEDGEMENTS 43

APPENDIX 1 - Compiler features. 44
 1. Listing format 44
 2. Listing control 45
 3. Compiler options 46
 4. Compiler error messages 47
 5. Execution summary 47
 6. Post-mortem dump 47
 7. Miscellaneous 49

APPENDIX 2. - File support. 50

APPENDIX 3. - Linking to external procedures 53

APPENDIX 4. - How to run the system 57
 1. The compile and go system 57
 2. The linkage editor version 59

APPENDIX 5. - Operating system dependence 61

REFERENCES 62

 4

Pascal 8000 Reference Manual IBM 360/370 version

1. INTRODUCTION

 Pascal is a general purpose programming language proposed and defined
by Wirth(1971a). It was later revised and appeared as Standard Pascal
(Jensen and Wirth, 1975). Its principal emphases are on teaching
programming and on the reliable and efficient implementation of the
language. It now seems to have gained considerable popularity among
many computing communities.

 Pascal may be considered a successor to ALGOL 60, from which it
inherits syntactic appearances . The novelties of Pascal lie mainly in
its ample data structuring facilities such as record, set and file
structures. It also affords more sophisticated control structures
suitable to "structured programming" (Dahl, Dijkstra and Hoare, 1972).

 An extended version of Standard Pascal, named Pascal 8000, has been
designed, and a compiler implemented for the HITAC 8800/8700 computer
(which has an IBM/370-like machine instruction set) under the operating
system OS7 at the Computer Centre of the University of Tokyo (Hikita,
Ishihata, 1976; Ishihata, Hikita, 1976). This compiler is itself
written in Pascal, and is supported by a runtime system written in
Fortran and Assembler language. This version has now been adapted at
the AAEC research establishment for use on IBM 360/370 computers under
the OS family of operating systems. The runtime system has been
rewritten entirely in Assembler language with some changes and
additions, and additional new language features have been incorporated.

 Several proposals for extensions to Pascal have been published, (for
example Lecarme and Desjardins, 1975). Extensions implemented at the
University of Tokyo are concerned with constant definitions for
structured types, variable initialisations, two new control structures
(forall and loop), specifications of procedure and function parameters,
and specifications of types. Extensions implemented at the AAEC include
an exponentiation operator, type-change functions, case-tag list syntax
extensions, and extensions to read and write capabilities. We believe
that, though they may not be entirely new, the extensions do not disturb
the original consistency and transparency of both syntax and semantics,
and give the user more power for describing algorithms easily and
clearly.

 This reference manual gives a complete specification of Pascal 8000,
including both the above sets of extensions. Additional information on
the operational aspects of the compiler is included in the Appendices.
Since this manual is intended to be a rigid and concise description of
our implementation, we recommend other appropriate references such as
Jensen and Wirth (1975) and Yasamura, Hikita and Ishihata (1975) as
introductory guides to the Pascal language.

 5

Pascal 8000 Reference Manual IBM 360/370 version

NOTATION - BACKUS-NAUR FORM

 According to traditional Backus-Naur form (bnf), syntactic constructs
are denoted by English words enclosed between the angular brackets < and
> . These words also describe the nature or meaning of the construct,
and are used in the accompanying description of semantics. Zero or more
occurrences of a construct is indicated by enclosing the construct
within metabrackets ¯ and ò . The square brackets [and] indicate
optional constructs. The symbol <empty> denotes the null (zero-length)
sequence of symbols.

Summary of the Extensions to Standard Pascal

 Following are brief explanations of the new features implemented in
the IBM 360/370 version of Pascal 8000.

1. Constant Definitions for Structured Types

 In Standard Pascal one may define an identifier as a synonym for
constant data, but such constant definitions are applicable only to
numbers and strings. In Pascal 8000 this facility is extended to
structured types such as the array, record (without variants) and set.

 The usual set notation denotes a constant set. The syntax of
"constant set" is defined along the lines of "set":

<constant set> ::= (. <constant set element list> .)
<constant set element list> ::=
 <constant set element> ¯,<constant set element>ò | <empty>
<constant set element> ::= <constant> | <constant> .. <constant>

The following is an example of a constant definition for a set:

 const evennumbers = (. 0, 2, 4, 6, 8 .);

 For the array or record type, a new convenient notation is introduced
in order to simplify the description of the constant value of these
types. Constants of these types are denoted by listing the values of
the most basic (simple, string or set type) components sequentially
between the two symbols (# and #) .

<structured constant> ::= (# <constant or constant set>
 ¯,<constant or constant set>ò #)
<constant or constant set> ::= <constant> | <constant set>

 When defining an identifier as a synonym for a structured constant,
one is required to specify its type. Thus the syntax of the constant
definition becomes:

<constant definition> ::= <identifier> = <constant or constant set> |
 <identifier> = <structured constant> : <type>

 6

Pascal 8000 Reference Manual IBM 360/370 version

Following is an example of constant definition for structured constants:

 const v0 = (# 0.0, 0.0, 0.0 #) : array(.1..3.) of real;
 p1 = (# 'tom', 20, male #) : person;

2. Variable Initialisations

 The ability to initialise variables is introduced in Pascal 8000.
Values of variables declared in the outermost block, namely the main
program, may be initialised at compile time. The variables that can be
initialised are of types simple, string, array, record (without
variants) and set. No type specification is necessary. The syntax is

<variable initialisation part> ::=
 value <variable initialisation> ¯;<variable initialisation>ò;
 | <empty>
<variable initialisation> ::=
 <entire variable> := <constant or constant set> |
 <entire variable> := <structured constant>

The variable initialisation part is placed between the variable
declaration part and the procedure and function declarations of the
outermost block. For example:

 value set1 := (. .) ;
 m := (# 0, 0, 0, 0 #) ;

3. Forall Statements

 A forall statement is a new type of control structure operating over
the components of a set. It specifies that a statement is to be
repeatedly executed while a control variable ranges among all the
elements of a certain set. The syntax is

<forall statement> ::= forall <control variable> in <expression>
 do <statement>

The expression following the symbol in must be of type set, and the
control variable following the symbol forall must have the base type of
the set. For example the following statement

 forall x in set1 do if odd(x) then writeln(x)

selects and writes out all the odd numbers from the set set1.

4. Loop Statements

 A new type of control structure, the loop statement, is introduced to
give more sophisticated loop exit control. A loop statement specifies
that a group of statements is to be repeatedly executed until control

 7

Pascal 8000 Reference Manual IBM 360/370 version

encounters an event. Events are neither boolean variables nor
conditions, but signals that indicate escape from the loop. Control can
then be transferred to the statement labelled by the event named in the
"postlude" part, and that statement is executed before control leaves
the loop statement. The syntax of the loop statement is

<loop statement> ::= loop <statement> ¯;<statement>ò end |
 loop until <event> ¯,<event>ò : <statement> ¯;<statement>ò
 postlude <event> : <statement> ¯;<event> : <statement>ò
 end
<event> ::= <identifier>

Syntactically, events are used just like procedure calls, but only
within loop statements. The scope of an event is the loop statement in
which it is defined. The predefined event named exit is provided which
means that no "postlude" statement is supposed when escaping from the
loop statement. An example of the use of the loop statement is

 loop until found, nofound:
 i := i+1;
 if table(.i.) = x then found;
 if i = tablesize then nofound
 postlude found: key := i;
 nofound: errorflag := true
 end

5. Procedure Skeletons

 In Standard Pascal, the syntax for the declaration of a procedure or
function with procedure or function parameters is as follows

<formal parameter section> ::= <parameter group> |
 var <parameter group> |
 procedure <identifier> ¯,<identifier>ò |
 function <parameter group>
<parameter group> ::= <identifier> ¯,<identifier>ò : <type identifier>

This definition, however, causes some difficulties at run time with the
possible conflicts of type and number of the parameters of the procedure
or function parameter. It is difficult for the compiler to detect this
kind of mismatch in the source program.

 In Pascal 8000, the notion of the <procedure skeleton> is employed as
a solution to this problem. This solution was originally proposed by
Lecarme and Desjardins (1975). The idea is to specify the types of the
parameters of procedure or function parameters explicitly. The syntax
above is then replaced by

<formal parameter section> ::= <parameter group> | var <parameter group>
 | procedure <procedure skeleton> ¯,<procedure skeleton>ò |
 function <procedure skeleton> ¯,<procedure skeleton> : <type>
<procedure skeleton> ::= <identifier> | <identifier> (<type> ¯,<type>ò)

 8

Pascal 8000 Reference Manual IBM 360/370 version

 In the original proposal, only <type identifier> is allowed rather
than the less restrictive <type> for <procedure skeleton>. This kind of
extension occurs in two more places in Pascal 8000. (See the following
section.)

 As an example, the declaration of a function to find zeroes of
parameter functions (say, by bisection) would be:

 function bisect (function f(real) : real) : real;

instead of as in Standard Pascal:

 function bisect (function f : real) : real ;

6. Type specifications for parameter and function results

 It frequently occurs that in Standard Pascal, only a type identifier
is allowed instead of the general form of type specification. For
example,

<parameter group> ::= <identifier> ¯,<identifier>ò : <type identifier>
<result type> ::= <type identifier>

In Pascal 8000 this restriction is relaxed to allow <type> instead of
<type identifier> in the above type specifications. The syntax is
extended to:

<parameter group> ::= <identifier> ¯,<identifier>ò : <type>
<result type> ::= <type>

As a result, the following declaration of a function is now possible:

 function f(p : 1..10) :(male,female) ; ...

7. Exponentiation

 Exponentiation is supported. The multiple character which signifies
exponentiation is ** . Thus a**7 is equivalent to a¬, and a**b**c is
equivalent to a**(b**c).

 The bnf syntax for exponentiation is

<factor> ::= <facbody> | <facbody> ** <factor>
<facbody> ::= <variable> | <unsigned constant> | <expression> |
 <function designator> | <set> | not <factor>

 The semantics permits <facbody> to contain only variables, constants
expressions and function designators for the purpose of exponentiation.

 If the power factor is of type real, then a**b is calculated by
evaluating exp(b*ln(a)), and the standard routines for exp and ln are
invoked. If the type of the power is integer, then a run-time system

 9

Pascal 8000 Reference Manual IBM 360/370 version

call is made.

8. Reading Character Strings

 An extension has been made so that variables of type

 packed array (.n..p.) of char

(i.e. strings) may be read

The syntax specification is:

 read ([file,] x:m) or read ([file,] x)

where x is a variable of type packed array of char, and m is an integer
expression, variable or constant. The following cases need to be
considered, given that the remaining length of the input record is r.
 i) if m is not specified, and length(x)>r, then r characters will be
 read into x, and length(x)-r blanks inserted to pad x.
 ii) if m is not specified, and length(x)<=r, then length(x) characters
 will be read into x and the input pointer moved up by length(x).
iii) if m is specified, then replace "length(x)" by "min(m,length(x))"
 in i) and ii) above.

9. Extension of procedures "read" and "write" to non-text files

 The standard procedures read and write may now apply to any file,
text or non-text. Operating on a non-text file, the definitions are

 read(f,v1) is equivalent to

 begin v1:=f@; get(f) end

and

 write(f,v1) is equivalent to

 begin f@:=v1; put(f) end

 Standard procedures writeln and readln, however, may not be applied
to non-text files.

10. The Type-change Function

 A "type-change" function has been introduced (courtesy Kludgeamus
(1976)). The mechanism provided by the standard functions "ord" and
"chr" has been extended, and now any type-identifier can be used to
change the type of an expression, with the expression result remaining
constant. The type function has one argument, of any type. For example

 10

Pascal 8000 Reference Manual IBM 360/370 version

 var name : packed array (.1..4.) of char;
 ebcdic : integer;

 begin
 name:='fred';
 ebcdic:=integer(name)
 end

11. Extended Case Statement

 Case-tag lists may now range over a number of constants, without
explicitly having to list each constant. The extended range is denoted
by:

 <constant> .. <constant>

Thus,

 4,6..10,15,30..45:

is now a valid case-tag list. A default exit is also supplied by:

 else:<statement>

i.e. else: is a valid case tag in every case statement. The else tag
will be used if none of the other tags match.

12. Additional Standard Procedures and Functions

 Four additional standard procedures have been implemented. These are

 pack, unpack, halt, message.

An additional standard function, card, is also implemented.

13. Additional Standard Type

 The standard type alfa is defined to mean packed array (.1..8.) of
char.

 11

Pascal 8000 Reference Manual IBM 360/370 version

1. VOCABULARY

 A Pascal program consists of a sequence of the following basic
symbols.

<basic symbol> ::= <letter> | <digit> | <special symbol>
<letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n |
 o | p | q | r | s | t | u | v | w | x | y | z | $ |
 _
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<special symbol> ::= + | - | * | / | = | <> | < | > | <= | >= | (|) |
 (. | .) | (* | *) | := | . | , | [|] | & | ; |
 : | ' | @ | .. | (# | #) | | | ¯ | ò | ^ | ^= | **
 | <reserved word>
<reserved word> ::= div | mod | nil | in | or | and | not | if | then |
 else | case | of | repeat | until | while | do |
 for | to | downto | forall | loop | postlude |
 begin | end | with | goto | const | var | type |
 value | array | record | set | file | function |
 procedure | label | packed | program

 The construct

 (* <any sequence of characters not containing "*)"> *)

or

 ¯ <any sequence of characters not containing "ò"> ò

is called a comment. Blanks, end-of-lines and comments are considered
to be separators. An arbitrary number of separators may be inserted
between any two numbers, strings, identifiers or special symbols without
affecting the meaning of the program, subject to the following two
rules:
 i) Separators may not occur within numbers, strings, identifiers, or
 reserved words. Blanks within strings have the same meaning as
 other characters.
ii) At least one separator must occur between two consecutive numbers,
 identifiers or reserved words.

Note also that the symbols [and] can be used for array and set
operations if these characters are available. If they cannot be easily
utilised, then the substitute character pairs are (. and .). The same
applies to the comment braces ¯ and ò, which may be interchanged with (*
and *).

 Note also that the underscore character acts as an alphabetic
this is an identifier is a valid identifier.

 12

Pascal 8000 Reference Manual IBM 360/370 version

2. NUMBERS,STRINGS AND IDENTIFIERS.

2.1. Numbers

 There are two kinds of constant numbers, namely integers and reals.

<unsigned number> ::= <unsigned integer> | <unsigned real>
<unsigned integer> ::= <digit sequence>
<digit sequence> ::= <digit> ¯<digit>ò
<unsigned real> ::= <digit sequence> . <digit sequence> |
 <digit sequence> . <digit sequence> E
 <scale factor> |
 <digit sequence> E <scale factor>
<scale factor> ::= <unsigned integer> | <sign> <unsigned integer>
<sign> ::= + | -

Examples: 1024 3.14 5.772E-1 1E-10

2.2. Strings

 Sequences of characters enclosed by single quote marks are called
strings. Strings consisting of a single character are constants of the
standard type char. Strings consisting of n (>1) enclosed characters
are constants of type:

 packed array (. 1..n .) of char

If the string is to contain a quote mark, then this quote mark must be
written twice.

<string> ::= ' <character> ¯<character>ò '

Examples: 'a' 'don''t' 'is this a string?'

2.3. Identifiers

 Identifiers serve to denote constants, types, variables, fields,
events, procedures and functions.

<identifier> ::= <letter> ¯<letter or digit>ò
<letter or digit> ::= <letter> | <digit>

 The length of an identifier is arbitrary, but only the first eight
characters are significant, namely, identifiers with the same first
eight characters are considered to be the same identifier. Identifiers
must be different from reserved words. Certain identifiers, called
standard identifiers, are predefined, such as integer, char and boolean.
In contrast to the reserved words, one may redefine any standard
identifier. Identifiers must be unique within their scope of
definition.
Examples: pi person x5

 13

Pascal 8000 Reference Manual IBM 360/370 version

3. CONSTANT DEFINITIONS

 A constant definition serves to introduce an identifier as a synonym
for constant data. One may define a structured constant of array,
record (without variant part) or set type. For structured constants of
array or record type, the values of the basic (unstructured) components
of the data are listed sequentially, surrounded by the two special
symbols (# and #), and followed by a type specification. For multi -
dimensional arrays, the order is on the basis of varying the last index
first.

<constant definition> ::= <identifier> = <constant or constant set> |
 <identifier> =
 <structured constant> : <type>
<constant or constant set> ::= <constant> | <constant set>
<constant> ::= <unsigned number> | <sign> <unsigned number> |
 <constant identifier> | <sign> <constant identifier>
 | <string>
<constant identifier> ::= <identifier>
<constant set> ::= (. <constant set element list> .)
<constant set element list> ::= <constant set element>
 ¯,<constant set elementò | <empty>
<constant set element> ::= <constant> | <constant> .. <constant>
<structured constant> ::= (# <constant or constant set>
 ¯,<constant or constant set>ò #)

Examples: pi = 3.14159
 minuspi = -pi
 title = 'this is a title'
 oddnumbers = (. 1,3,5,7,9 .)
 vector = (# 0.0,0.0 #) : array (.1..2.) of real

 14

Pascal 8000 Reference Manual IBM 360/370 version

4. TYPE DEFINITIONS

 A type definition associates an identifier with a specific data type.
A data type defines the set of values a variable may assume. Every
variable occurring in a program must be associated with one and only one
type.

<type definition> ::= <identifier> = <type>
<type> ::= <simple type> | <structured type> | <pointer type>

4.1. Simple types

<simple type> ::= <scalar type> | <subrange type> | <type identifier>
<type identifier> ::= <identifier>

4.1.1. Scalar types

 A scalar type defines an ordered set of values by enumeration of the
identifiers which denote these values. An integer value that is
transparent to the programmer is associated with each of these
identifiers.

<scalar type> ::= (<identifier> ¯,<identifier>ò)

Examples: (club,diamond,heart,spade)
 (sunday,monday,tuesday,wednesday,thursday,friday,saturday)

 Besides the user-defined scalar types explained above, the following
four scalar types are predefined.

1) boolean. A boolean value is one of the logical truth values
 denoted by the predefined identifiers true and false.
 The lexical order is false < true.

2) Integer. This incorporates the integers from -2žœ to 2žœ-1
 inclusive. Maxint is a predefined constant with a value
 of 2žœ-1.

3) Real. Real numbers are expressed in double word, floating
 format, and can take absolute values between 10-¬« and
 10¬µ. This gives an accuracy of approximately 14 decimal
 digits.

4) Char. Each character is represented by the EBCDIC code. Their
 ordering and associated integer values are defined by
 their internal representations.

4.1.2. Subrange types

 A subrange type is defined as a subrange of another scalar type
(except for real, of course), by specifying the minimum and maximum

 15

Pascal 8000 Reference Manual IBM 360/370 version

values of the subrange. The lower bound must be less than the upper.

<subrange type> ::= <constant> .. <constant>

Examples: -100..100 'a'..'z' monday..friday

4.2 Structured types

 A structured type is specified by its component types and structuring
methods. There are four kinds of structuring methods: arrays, records,
sets, and files. Both arrays and records may be specified as packed
structures. This implies that data elements that can be represented by
less than one word will be "packed" together in words, thus occupying
the minimum amount of storage. This representation is achieved at the
expense of some execution speed.

4.2.1 Array types

 An array type is a structure consisting of a fixed number of
components all of which are of the same type. Each component is
distinguished by an index. The index must be a simple type of finite
elements (thus, the type real is not allowed as an index).

<array type> ::= array (. <index type> ¯,<index type>ò .)
 of <component type>
<index type> ::= <simple type>
<component type> ::= <type>

Examples: array (. boolean .) of week
 array (. 1..10, 1..10 .) of real
 array (. 1..80 .) of char

4.2.2. Record types

 A record type consists of a fixed number of components, called
fields, of possibly different types. A record type may have several
variants, and a tagfield specifies which variant is applicable at a
given time. The scope of a field identifier is the smallest record in
which it is defined.

<record type> ::= record <field list> end
<field list> ::= <fixed part> | <fixed part> ; <variant part> |
 <variant part>
<fixed part> ::= <record section> ¯;<record section>ò
<record section> ::= <field identifier> ¯,<field identifier> :<type>
 | <empty>
<field identifier> ::= <identifier>
<variant part> ::= case <tag field> <type identifier> of
 <variant> ¯;<variant>ò
<tag field> ::= <identifier> : | <empty>

 16

Pascal 8000 Reference Manual IBM 360/370 version

<variant> ::= <record label list> : (<field list>) | <empty>
<record label list> ::= <case label> ¯,<case label>ò
<record label> ::= <constant>

Examples: record
 day : 1 .. 31;
 month : 1 .. 12;
 year : integer
 end

 record
 name : alfa;
 case sex : boolean of
 true : (age : integer);
 false : (height : real)
 end

4.2.3. Set types

 A set type defines the range of values which becomes the powerset of
its so-called base type. A base type must be a simple type (except for
real), and its associated integer values must be between 0 and 63. (For
this reason, a set of characters is not allowed due to the
representation by the EBCDIC code).

<set type> ::= set of <base type>
 ___ __
<base type> ::= <simple type>

Examples: set of 1..10 ; set of monday..friday

4.2.4. File types

 A file type is a structure consisting of a sequence of components all
of which are of the same type. Components must in turn not be of type
file.

<file type> ::= file of <type>

Examples: file of integer
 file of array (. 1..3 .) of real

 The standard file type "text" specifies the files of component type
char, i.e. file of char. Files of type text are considered to be
subdivided into lines, each separated by an end-of-line marker. The
standard file names "input" and "output" are of type text, and represent
the standard input and output files for the user.

 17

Pascal 8000 Reference Manual IBM 360/370 version

4.2.5. Pointer types

 A variable of pointer type serves to "point" to data and contains the
address of the item pointed to. The pointer value nil belongs to every
pointer type, and it in turn points to no data at all. The dereference
operator "@" can be used to access the data being pointed to by a
pointer variable or structure.

<pointer type> ::= @ <type identifier>

Examples: @integer @person

 18

Pascal 8000 Reference Manual IBM 360/370 version

5. DECLARATIONS AND DENOTATIONS OF VARIABLES

 A variable declaration specifies the variables local to a procedure
or function, and associates them to their data types. Every variable
occurring in a statement must have been previously declared.

<variable declaration> ::= <identifier> ¯,<identifier>ò : <type>

Examples: x,y,z : real p1,p2 : person

 Denotations of variables either designate entire variables,
components of variables, or variables referenced by pointer variables.

<variable> ::= <entire variable> | <component variable> |
 <referenced variable>

5.1. Entire variables

<entire variable> ::= <variable identifier>
<variable identifier> ::= <identifier>

5.2. Component variables

 Component variables are the components of the data of array, record
or file type.

<component variable> ::= <indexed variable> | <field designator> |
 <file buffer>

5.2.1. Indexed variables

 An indexed variable is a component of a variable of type array. The
types of the expressions used as indices must coincide with those that
are defined as index types.

<indexed variable> ::= <array variable>
 (. <expression> ¯,<expression>ò .)
<array variable> ::= <variable>

Example: matrix (. i+1, 2*j+1 .)

5.2.2. Field designators

 A field designator is a component of a variable of record type.

<field designator> ::= <record variable> . <field identifier>
<record variable> ::= <variable>

 19

Pascal 8000 Reference Manual IBM 360/370 version

Example: person.name family.parents.son

5.2.3. File buffers

 Only one component of a file is directly accessible at any instant.
This component is represented by the buffer variable of the component
type.

<file buffer> ::= <file variable> @
<file variable> ::= <variable>

Example: file1@

5.3. Referenced variables.

 A referenced variable is a variable pointed to by a pointer variable.

<referenced variable> ::= <pointer variable> @
<pointer variable> ::= <variable>

Example: p1@ s@.r@

 20

Pascal 8000 Reference Manual IBM 360/370 version

6. VARIABLE INITIALIZATIONS

 Variables declared in the outermost block may be initialized at
compile time. Variables of array and record type (without variant
parts) are initialized by structured constants.

<variable initialization> ::= <entire variable> :=
 <constant or constant set> |
 <entire variable> :=
 <structured constant>

Examples: k := 0
 m := (# 1.0,1.0,1.0 #)

 21

Pascal 8000 Reference Manual IBM 360/370 version

7. EXPRESSIONS

 An expression consists of operators and operands, where operands are
either constants, variables or function designators. It specifies a
rule for evaluation of a value, where the conventional rules of left to
right evaluation and operator precedence are observed. The operator not

has the highest precedence, next the exponentiation operator, next the
multiplying operators, then the adding operators, with the relational
operators taking the lowest precedence. An expression enclosed within
parentheses is evaluated independently of preceding or following
operators.

<expression> ::= <simple expression> |
 <simple expression> <relational operator>
 <simple expression>
<simple expression> ::= <term> | <sign> <term> |
 <simple expression> <adding operator> <term>
<term> ::= <factor> | <term> <multiplying operator> <factor>
<factor> ::= <facbody> | <facbody> <exponentiation operator>
 <factor>
<facbody> ::= <unsigned constant> | <variable> | <set> |
 <function designator> | not <factor> |
 (<expression>)
<set> ::= (. <element list> .)
<element list> ::= <element> ¯,<element>ò | <empty>
<element> ::= <expression> | <expression> .. <expression>

Examples:
 (set) -- (. 3,6,9 .) (. sunday,monday .)
 (factor) -- 12 x x**y sin(0)
 (a+b+c) 3**x**2.0
 (term) -- x y b1 and b2
 (simple
 expression) -- -pi i-(j-k) b or odd(n)
 (expression) -- 2 in set1 x<=y 3*j<>k

 22

Pascal 8000 Reference Manual IBM 360/370 version

7.1. Operators

7.1.1. The operator not

 The operator not implies the logical negation of its boolean operand.
Note that the symbol ^ may also be used.

7.1.2. Exponentiation operator

<exponentiation operator> ::= **

 The type of the result of raising a to the power b is defined by the
following table.

 a / b real integer(>=0) integer(<0)

 integer real integer undefined
 real real real real

 Note that the exponentiation operator is right associative

Example: a**b**c is equivalent to a**(b**c)

7.1.3 Multiplying operators

<multiplying operator> ::= * | / | div | mod | and | &

operator operation operands result

* multiplication
set intersection

real, integer
set type T

real, integer
set type T

/ division real, integer real
div division integer integer
mod modulus integer integer
& logical conjunction boolean boolean
and logical conjunction boolean boolean

1) As long as at least one of the operands is of type real, the result
is real.

 23

Pascal 8000 Reference Manual IBM 360/370 version

7.1.4. Adding operators

<adding operator> ::= + | - | or | |

operator operation operands result

+ addition
set union

real, integer
set type T

real, integer
set type T

- subtraction
set difference

real, integer
set type T

real, integer
set type T

| logical disjunction boolean boolean
or logical disjunction boolean boolean

1). As long as at least one of the operands is of real type, the result
is real.

7.1.5. Relational operators

<relational operator> ::= = | <> | <= | >= | < | > | in | ^=
 __
operator operation operands result
= <>
 ^=

equality,
inequality

simple, string, set
or pointer types

boolean

<= >= order
set inclusion

simple or string types
set types

boolean
boolean

< > order simple or string types boolean
in set membership base type and set type boolean

7.2 Function designators

 A function designator is used in expressions to invoke a function.
Formal parameters of the function are replaced by the actual parameters.

<function designator> ::= <function identifier> |
 <function identifier> (<actual parameter>
 ¯,<actual parameter>ò)
<function identifier> ::= <identifier>

Examples: gcd(k,1024) sin(x+y)

 24

Pascal 8000 Reference Manual IBM 360/370 version

8. STATEMENTS

 A statement is the unit for the execution of a program. Statements
may be preceded by labels which designate them as the destination of
goto statements. Labels are unsigned integers composed of at most four
digits. The scope of a label is the entire text of the block in which
it is declared.

<statement> ::= <unlabelled statement> |
 <label> : <unlabelled statement>
<unlabelled statement> ::= <simple statement> | <structured statement>
<label> ::= <unsigned integer>

8.1. Simple statements

 Simple statements are statements not composed of other statements.
Events are used only in loop statements.

<simple statement> ::= <assignment statement> | <goto statement> |
 <procedure statement> | <empty statement> |
 <event>
<empty statement> ::= <empty>

8.1.1. Assignment statements

 An assignment statement serves to replace the value of the left-hand
variable with the evaluated value of the right-hand expression.

<assignment statement> ::= <variable> := <expression> |
 <function identifier> := <expression>

 Both sides of the statement must be of the same type (file types are
not allowed). The exceptions are when
1) The type of a variable is real and the type of an expression is
 integer. In this case the integer value of the expression is
 converted to real value.
2) One of them is a subrange type of the other.

Example: found := x <> 0
 add := p1 + p2

8.1.2. Goto statements

 A goto statement indicates that control of execution is to be
transferred to another part of the program text, namely to the place of
the label.

<goto statement> ::= goto <label>

 25

Pascal 8000 Reference Manual IBM 360/370 version

 Every label must be declared in the label declaration part of the
procedure in which the label is defined. It is not possible to jump
into a procedure, but jumping out of a procedure is possible. The
effect of a jump from outside a structured statement into that statement
is not defined.

Examples: goto 9999 goto 1977

8.1.3. Procedure statements

 A procedure statement activates the procedure named by the statement.
Formal parameters of the procedure are replaced by the actual
parameters. There are four kinds of parameters - value, variable,
procedure and function.

<procedure statement> ::= <procedure identifier> |
 <procedure identifier> (<actual parameter>
 ¯,<actual parameterò)
<procedure identifier> ::= <identifier>
<actual parameter> ::= <expression> | <variable> |
 <function identifier> | <procedure identifier>

Examples: f(2.0,x1,fun1)
 cos(pi)

8.2. Structured statements

 Structured statements are statements which themselves are composed of
several other statements.

<structured statement> ::= <compound statement> |
 <conditional statement> |
 <repetitive statement> | <with statement>

8.2.1. Compound statements

 A compound statement specifies that component statements are to be
executedin the same sequence as they are textually written.

<compound statement> ::= begin <statement> ¯;<statement>ò end

Example: begin t := x; x := y; y := t end

8.2.2. Conditional statements

 A conditional statement selects a single statement of its component
statements for execution.

<conditional statement> ::= <if statement> | <case statement>

 26

Pascal 8000 Reference Manual IBM 360/370 version

8.2.2.1. If statements

 An if statement specifies that a statement is to be executed only if
a certain boolean expression is true. If the expression is false, then
either no statement, or the statement following the symbol else, is
executed.

<if statement> ::= if <expression> then <statement> |
 if <expression> then <statement> else <statement>

 The syntactic ambiguity arising from the construct:

 if e1 then if e2 then s1 else s2

 is resolved by interpreting it as equivalent to:

 if e1 then begin if e2 then s1 else s2 end

Examples: if x=y then table(.i.):=true
 if b1 then a:=0 else a:=a+1

8.2.2.2. Case statements

 A case statement consists of an expression called the selector, and a
list of statements, each labelled by either a constant, or a range of
constants, of the type of the selector, or the default label "else:".
There can be only one default label per case statement. The selector
type must be simple (except real). The case statement selects for
execution that statement the label of which contains the current value
of the selector. If no such label exists, and no default label was
specified, an execution error results. If a default label is supplied,
the default path is taken.

<case statement> ::= case <expression> of <case list element>
 ¯;<case list element>ò end
<case list element> ::= <case label list> : <statement> | <empty>
<case label list> ::= <case statement label> ¯,<case statement label> ò
 | else
<case statement label> ::= <constant> | <subrange>

Example: case i+2*j of
 3 : z := sin(x);
 -1..1,10 : z := cos(x)
 7 : z := tan(x);
 else : z := 0
 end

8.2.3. Repetitive statements

 Repetitive statements specify that certain statements are to be
repeatedly executed. Escaping from the loop is controlled by several

 27

Pascal 8000 Reference Manual IBM 360/370 version

methods, depending on the statement used.

<repetitive statement> ::= <while statement> | <repeat statement> |
 <for statement> | <forall statement> |
 <loop statement>

8.2.3.1. While statements

 A while statement indicates that a statement is to be repeatedly
executed while the value of a certain boolean expression is true. The
boolean expression is evaluated before each iteration.

<while statement> ::= while <expression> do <statement>

Example: while m(.i.)=0 do i:=i+1

8.2.3.2. Repeat statements

 A repeat statement indicates that a group of statements is to be
executed repeatedly until the value of a certain boolean expression
becomes true. The boolean expression is evaluated after each iteration.
Therefore, the group of statements is executed at least once.

<repeat statement> ::= repeat <statement> ¯;<statement>ò
 until <expression>

Example: repeat x:=x+m(.i.); i:=i+k until i=c

8.2.3.3. For statements

 A for statement indicates that a statement be repeatedly executed
while a progression of values is assigned to the control variable of the
for statement.

<for statement> ::= for <control variable> := <for list>
 do <statement>
<control variable> ::= <entire variable>
<for list> ::= <initial value> to <final value> |
 <initial value> downto <final value>
<initial value ::= <expression>
<final value> ::= <expression>

 The control variable, the initial value, and the final value must be
of the same simple type. They may not be of type real. The value of
the control variable must not be altered in the repeated statement. The
initial and final values are evaluated only once. If, in the case of to
 (downto), the initial value is greater (less) than the final value, the
controlled statement is not executed. The final value of the control
variable is left undefined on normal termination of the for statement.

 28

Pascal 8000 Reference Manual IBM 360/370 version

Examples: for i:=1 to 100 do x:=x+y(.i.)
 for j:=10 downto -c do if j=a then goto 99

8.2.3.4. Forall statements

 A forall statement indicates that a statement is to be repeatedly
executed for each element of a certain set.

<forall statement> ::= forall <control variable> in <expression>
 do <statement>

 The type of the variable must be that of the base type of the
expression, which in turn must be of set type. The value of the control
variable must not be altered in the repeated statement. The set
expression is evaluated only once. The final value of the control
variable is left undefined on normal exit from the forall statement.

Examples: forall day in week do wage:=wage+c
 forall x in (.0,1.) + set0 do count:=count+1

8.2.3.5. Loop statements

 A loop statement indicates that a group of statements is to be
repeatedly executed until an event name is encountered. Control is then
transferred to the statement labelled by that event name in the postlude
part. Before termination of the loop statement, that statement is
executed once.

<loop statement> ::= loop <statement> ¯;<statement>ò end |
 loop until <event> ¯,<event>ò : <statement>
 ¯;<statement>ò
 postlude <event> : <statement> ¯;<event> :
 <statement>ò
 end
<event> ::= <identifier>

 Syntactically, events may be used like statements, but only within
loop statements. The scope of an event is the loop statement in which
it is defined. The predefined event name exit means that no "postlude"
statement is supposed when escaping the loop statement.

 29

Pascal 8000 Reference Manual IBM 360/370 version

Example: loop until found,nofound:
 if table(.i.)=x then found;
 i:=i+1;
 if i=tableix then nofound
 postlude
 found: ;
 nofound: begin table(.tableix.):=x;
 tableix:=tableix+1 end
 end

8.2.4. With statements

 A with statement opens the scope containing the field identifiers of
the specified record variables, so that the field identifiers may occur
as variable identifiers. Within it the fields of record variables may
be designated only by its field identifiers.

<with statement> ::= with <record variable list> do <statement>
<record variable list> ::= <record variable> ¯,<record variable> ò

 No assignments may be made to any element of the record variable list
in the with statement.

Example: with person do begin name:='mari'; age:=20 end

 30

Pascal 8000 Reference Manual IBM 360/370 version

9. PROCEDURE DECLARATIONS

 Procedure declarations serve to define a program part which can be
activated (possibly recursively) by procedure statements.

<procedure declaration> ::= <procedure heading> <block>
<procedure heading> ::= procedure <identifier> ; |
 procedure <identifier>
 (<formal parameter section>
 ¯;<formal parameter section>ò) ;
<formal parameter section> ::= <parameter group> | var <parameter group>
 | procedure <procedure skeleton> ¯,<procedure skeleton>ò
 | function <procedure skeleton> ¯,<procedure skeleton>ò : <type>
<parameter group> ::= <identifier> ¯,<identifier>ò : <type>
<procedure skeleton> ::= <identifier> |
 <identifier> (<type> ¯,<type>ò)

 An identifier following the symbol procedure denotes the name of the
procedure. The formal parameter section lists the name of each formal
parameter followed by its type. Four kinds of parameters are possible:
value parameters, variable parameters, procedure parameters and function
parameters. For the value parameters, the actual parameters must be
expressions, and their values are evaluated and passed when the
procedure is called. Parameters preceded by the symbol var are variable
parameters, and the corresponding actual parameters must be variables.
When the procedure is called, variable formal parameters are replaced by
actual parameters. File parameters must be specified as variable
parameters. Parameters preceded by the symbols procedure and function
are procedure and function parameters respectively. Corresponding
actual parameters are procedures and functions, with the following
rules:
1) They must have value parameters only.
2) The number and types of their parameters must coincide with those
 specified in the procedure skeletons.
3) Actual parameters must not be the standard procedures or functions.

<block> ::= <label declaration part>
 <constant definition part>
 <type definition part>
 <variable declaration part>
 <procedure and function declaration part>
 <statement part>
<label declaration part> ::= label <label> ¯,<label>ò ; | <empty>
<constant definition part> ::= const <constant definition>
 ¯;<constant definition>ò ; | <empty>
<type definition part> ::= type <type definition>
 ¯;<type definition>ò ; | <empty>
<variable declaration part> ::= var <variable declaration>
 ¯;<variable declaration>ò ; | <empty>
<procedure and function declaration part> ::=
 ¯<procedure or function declaration>;ò
<procedure or function declaration> ::= <procedure declaration> |
 <function declaration>

 31

Pascal 8000 Reference Manual IBM 360/370 version

<statement part> ::= <compound statement>

 The label declaration part lists all the labels which mark a
statement in the statement part of this block. The constant definition
part defines all the synonyms for constants local to the block. The
type definition part contains all the type definitions local to the
block. The variable declaration part contains all the variable
declarations local to this block. The procedure and function
declaration part defines subordinate program parts, namely, procedures
and functions. Labels, constants, types, variables, procedures and
functions have significance only within the block in which they are
declared, which is called the scope of these items. If a name is
redefined within a block, the scope of the second occurrence of the name
is excluded from the scope of the first. All labels and identifiers
must be declared before they are referenced. The following two
exceptions are however allowed.

1) The type identifier in a pointer type definition.

2) Procedure and function calls when there is a forward reference.

 The statement part specifies the actions to be taken when this
procedure is activated.

 If a procedure is referenced before its declaration appears, then a
forward declaration must be made before the reference. The general
format is

 <procedure heading> forward ;

 In this case a parameter list (and result type for the case of
functions) is unnecessary at the actual procedure declaration.

9.1. Standard procedures

9.1.1. File handling procedures

 In the following, the parameter f is a variable of file type.

1) reset(f) resets the buffer variable of f to the beginning of the
 file. eof(f) becomes false if f is non-empty;
 otherwise, f@ is undefined and eof(f) becomes true. It
 cannot be applied to the standard file input.

2) rewrite(f) precedes the rewriting of the file f. The current value
 of f is replaced with the empty file. It cannot be
 applied to the standard file output.

3) get(f) advances the current file position to the next
 component. If no next component exists, then eof(f)
 becomes true and the value of f@ is undefined.

 32

Pascal 8000 Reference Manual IBM 360/370 version

4) put(f) appends the value of the buffer f@ to the file f.

5) page(f) is applicable only to textfiles. Instructs the printer
 to skip to the top of a new page before printing the
 next line of the textfile f.

9.1.2. Dynamic allocation procedures

 In the following, the parameter p is the variable parameter of
pointer type.

1) new(p) allocates a new variable and assigns its pointer
 reference to the pointer variable p. If p is of
 record type with variants, then the form

2) new(p,t1,...,tn) can be used to allocate a variable of the variant
 with tag field values t1...tn. The tag field
 values must be listed contiguously and in the
 order of their declaration. Note that the use of
 "new" with tags actually assigns the record tags
 with the values t1...tn; no further tag assignment
 is necessary. NOTE. This scheme of automatic tag

 assignment differs from the description in the
 manual by Jensen and Wirth. It also differs from
 the Cyber implementation of Pascal. However, the
 authors believe that it is the correct approach,
 and the user may choose to make explicit tag
 assignments anyway if he/she so desires.

3) mark(p) A pointer variable p is set to point to the
 current end of the area allocated for the
 dynamically generated data.

4) release(p) The end of the area currently occupied by
 dynamically generated data is reset to the place
 pointed to by p, so that the dynamically allocated
 area beyond the place pointed to by p is released.

9.1.3. Data transfer procedures

pack(a,i,z) means

 for j:=u to v do
 z(.i.) := a(.j-u+i.)

unpack(z,a,i) means

 for j:=u to v do
 a(.j-u+i.) := z(.i.)

 33

Pascal 8000 Reference Manual IBM 360/370 version

 where a is an array variable of type
 array (.m..n.) of t
 and z is a variable of type
 packed array (.u..v.) of t
 and i, j, u and v are of type integer.

 Note that the bounds on i are:

 m <= i <= u-v+n

 Run-time bounds checking on variable i is optionally performed by
the compiler.

9.1.4. Further standard procedures

 In the following, the parameter s is the variable parameter of type
alfa

1) time(s) gives the current time in the form hh:mm:ss, where hh
 denotes the hour, mm denotes the minute and ss the
 second.

2) date(s) gives the current date in the form dd/mm/yy, where yy
 denotes the last two digits of the year, mm the month
 and dd the day of the month.

3) message(x) The string x is written into the joblog. x should
 contain at most 80 characters.

4) halt terminates the execution of the program and issues a
 post-mortem dump if the program was appropriately
 compiled(i.e. using the $P+ option).

 34

Pascal 8000 Reference Manual IBM 360/370 version

10. FUNCTION DECLARATIONS

 Functions are subroutines which yield a single scalar or pointer
value

<function declaration> ::= <function heading> <block>
<function heading> ::= function <identifier> : <result type> ; |
 function <identifier>
 (<formal parameter section>
 ¯,<formal parameter section>ò) : <result type>;
<result type> ::= <type>

 At least one assignment to the function must appear in the statement
part of the function declaration.

10.1. Standard functions.

10.1.1. Predicates

 In the following, the parameter x is called by value, and the
parameter f is called as a variable parameter.

1) odd(x) x is of type integer. The result is true if x is odd,
 and false if x is even.

2) eof(f) f is of file type. The result is true if f is in an end-
 of-file state. It cannot be applied to the standard
 files input and output.

3) eoln(f) f is of file type. The result is true if f is in an end-
 of-line state. It cannot be applied to the standard
 files input and output.

10.1.2. Arithmetic functions

1) abs(x) Absolute value of the number x.

2) sqr(x) Square of the number x.

3) sqrt(x) Square root of the number x.

4) exp(x) Exponential function e**x.

5) ln(x) Natural logarithm of x.

6) sin(x) Trigonometric function.

7) cos(x) Trigonometric function.

 35

Pascal 8000 Reference Manual IBM 360/370 version

8) arctan(x) Inverse trigonometric function.

 The parameter x is called by value. The type of x may be real or
 integer. The type of the result is the same as that of x for 1) and
 2), and real for 3)-8).

10.1.3. Transfer functions

 In the following, the parameter x is called by value.

1) trunc(x) x is of type real, and the result is the truncated value
 of x.

2) round(x) x is of type real, and the result is the nearest integer
 to x.

3) ord(x) x is of any simple type, except real, and the result is
 the integer value associated with x.

4) chr(x) x is of type integer, and the result is the character
 whose associated value is x, if it exists.

10.1.4. Further standard functions

 In the following, the parameter x is called by value.

1) succ(x) x is of any simple type, except real, and the result is
 the successor to x. It is undefined if one does not
 exist.

2) pred(x) x is of any simple type, except real, and the result is
 the predecessor of x. It is undefined if one does not
 exist.

3) clock yields an integer value equal to the central processor
 time, expressed in milliseconds, already used by this
 job.

4) card(x) x is of set type. The returned result is the cardinality
 of x (i.e. the number of elements contained in the set
 x).

 36

Pascal 8000 Reference Manual IBM 360/370 version

10.1.5. The "type-change" function

 A type changing function has been introduced. The mechanism provided
by the standard functions ord and chr has been extended, and
any <type identifier> can be used to change the type of an expression,
with the expression result remaining unchanged. The type-change
function has one argument, of any type. Note that the argument may not
be a constant.

Example: var name : packed array (. 1..4 .) of char;
 ebcdic: integer;
 begin
 name := 'fred';
 ebcdic:= integer(name)
 end;

 NOTE: The type change function can create havoc in a program if used
incorrectly. It is recommended for use by advanced programmers only.

 37

Pascal 8000 Reference Manual IBM 360/370 version

11. INPUT AND OUTPUT PROCEDURES

 Four standard procedures, read, readln, write, and writeln are
provided as the usual and convenient facilities for input and output.
They are applied to files of type text, besides the standard files input
and output, and further, procedures read and write may be applied to
files of any type.

11.1 The procedure read

 The general format is

 read ([f,] v1,v2, ... vn)

where f is an optional filename. If f is omitted, the standard file
input is assumed. v1,v2 ... vn are variables of type integer, real,
char, or packed array (1..n) of char when f is of type text. When f is
not of text type, then v1,v2 ... vn should be of types equivalent to the
component types of f.

 The above read statement is equivalent to:

 begin read([f,]v1); ... read([f,]vn) end

11.1.1. f of type text

 If v is of type char, then read(f,v) is equivalent to

 begin v:=f@; get(f) end

 If a parameter v is of type integer or real, a sequence of characters
which represents an integer or real number is read into v (that is,
free-format input). Consecutive numbers must be separated by blanks or
end-of-lines.

 If a parameter v is of type packed array (. 1..n .) of char, the
specification of the read procedure is extended to

 read ([f,] v [:m])

where m is an integer valued expression. For this form, the following
cases need to be considered, given that the remaining length of the
input record is r.

1) if n is not specified, and n>r, then r characters will be read
 into v, and n-r blanks inserted to pad v to the right. The
 input pointer now points to the end of the input record.

 38

Pascal 8000 Reference Manual IBM 360/370 version

2) if m is not specified, and n<=r, then n characters will be
 read into v and the input pointer moved up by n characters.

3) if m is specified, then replace n by min(n,m) in 1) and 2)
 above.

11.1.2. f of non-text type

 If f is not of type text, then read(f,v) is equivalent to

 begin v:=f@; get(f) end

11.2. The procedure readln

 The procedure readln is identical to read except that, after reading
 the values into the variables, it skips the remainder of the current
 record, and the pointer f is positioned at the beginning of the next
 record. readln may only be applied to text files.

11.3. The procedure write

 The procedure write has the following general format:

 write ([f,] p1,p2, ... pn)

 where f is a file of any type, and p1,p2 ... pn are the parameters of
 the form defined below. The above is equivalent to

 begin write([f,]p1); ... ; write([f,]pn) end

 If f is a textfile, then write appends character strings (one or more
 characters) to the textfile. In this case, the general format of the
 parameters p1,p2 ... pn is either one of

 e e:m e:m:n

 where e is an expression, the value of which is to be written out. The
 type of the expression e may be one of:

 boolean integer real

 char packed array (.1..p.) of char

 m and n are integer valued expressions, where m denotes the number of
 columns for e with preceding blanks, and n specifies the fraction
 length if e is of type real.

 If the value e requires less than m characters for its
 representation, then an adequate number of blanks is issued so that
 exactly m characters are written, with the value right justified. If

 39

Pascal 8000 Reference Manual IBM 360/370 version

 the number of characters required to represent e exceeds m, then the
 specified field width is expanded to enable the full value of e to be
 written. When m is not explicitly specified, the following default
 values are employed:

type default m
boolean 4 or 5
integer 12
real 24
char 1
string length of string

 If e is of type real, a decimal representation of the number e is
 written on the file f, preceded by an appropriate number of blanks. If
 the parameter n is missing, a floating-point representation consisting
 of a coefficient and a scale factor will be chosen (E - type output).
 Otherwise, a fixed point representation with n digits after the decimal
 point is obtained (F - type output).

 If the file f is not of type text, then

 write (f,p)

is equivalent to

 begin f@ := p; put(f) end

11.4. The procedure writeln

 The procedure writeln is entirely the same as write, except that,
 after writing out the value of the expression, an end-of-line marker
 will be written. Note that writeln may not be applied to non-text
 files.

 40

Pascal 8000 Reference Manual IBM 360/370 version

11.5. Printer-control characters

 If a text file is to be sent to the printer, the first character of
each line is interpreted as a control character by the printer, and is
not printed. The control characters are interpreted as follows:

character action
‘+’ no line feed (overprinting)

Blank single spacing
‘0’ double spacing
‘-‘ triple spacing
‘1’ new page before next line of printing

 41

Pascal 8000 Reference Manual IBM 360/370 version

12. PROGRAMS

 A Pascal program consists of a program heading and a block, possibly
with a variable initialisation part. A name following the symbol
program is a user program name , and it has no further significance in
the program. Program parameters are the names of the external files
used in the program. The outermost variables may be initialised by the
variable initialisation part.

<program> ::= <program heading>
 <label declaration part>
 <constant definition part>
 <type definition part>
 <variable declaration part>
 <variable initialisation part>
 <procedure and function declaration part>
 <statement part>
 .

 <program heading> ::= program <identifier>
 [(<program parameters>)] ;
 <program parameters> ::= <file variable> ¯,<file variable>ò
 <variable initialisation part> ::= value <variable initialisation>
 ¯;<variable initialisation>ò | <empty>

Example: program writeout(file1, output);
 var file1 : file of integer; b : integer;
 begin reset (file1);
 while not eof(file1) do
 begin b:=file1@; writeln(b);
 get(file1)
 end
 end.

 42

Pascal 8000 Reference Manual IBM 360/370 version

ACKNOWLEDGEMENTS

 In the original report from the University of Tokyo(Hikita and
 Ishihata,1976), the following acknowledgement was included:

 "We are grateful to the many people who assisted us in various ways
 during the work. Our compiler is based on Dr. H. H. Naegeli's "trunk"
 compiler, which Professor T. L. Kunii arranged to be sent to us. Our
 special gratitude goes to Professor H. Ishida of the Computer Centre
 for his supervision and support of the project, to Professor E. Goto
 for his supervision, and to Mr. M. Yasumura, our previous coworker (now
 at UCLA), for his contribution to the work. The implementation is done
 as a cooperational research project with the Computer Centre."

 The Australian authors are very grateful to Professor Teruo Hikita
 and his co-workers, for supplying their compiler on which the IBM
 360/370 version is based.

 We also acknowledge helpful discussions with staff in the Computer
 Science departments of the University of New South Wales and the
 University of Sydney. We also thank the Sydney Water Board for
 generously giving us access to their computer centre to enable testing
 under the SVS and MVS operating systems to be carried out.

 43

Pascal 8000 Reference Manual IBM 360/370 version

APPENDIX 1 Compiler features

1. Listing Format

 Compiled programs are listed in an environment designed to provide
 useful information to the programmer about program size and structure.
 Further, several options are available to control the listing produced,
 as well as to select options that affect compilation.

 Heading: Each page is headed by one line, indicating the version of
 Pascal that is currently executing, the date and time of compilation,
 as well as a page number. A title is also printed, if one has been
 defined.

 Listing: Consider the following example

 PASCAL 8000/2 AAEC (01 JULY 77)

 0630 -- PROGRAM PUT3(OUTPUT); (*THIS SHOULD PRINT '3' *)
 0630 -- VAR I : INTEGER;
 0634 -- A FUNCTION DUMMY : INTEGER;
 0000 00 A BEGIN DUMMY = -1 END;
 001C -- A PROCEDURE P(FUNCTION F:INTEGER);
 0048 -- VAR L : INTEGER;
 004C -- B FUNCTION R:INTEGER;
 0000 0- B BEGIN (* R *)
 000A -- R:=L; (* SHOULD PASS VALUE OF L BOUND *)
 0012 -0 B END; (* WHEN R WAS PASSED AS A PARAMETER*)
 0000 0- A BEGIN (* P *)
 000A -- I := I + 1; L := I;
 001E -- IF I = 3 THEN P(R)
 0036 -- ELSE IF I = 5 THEN WRITELN(' ',F)
 008E -- ELSE P(F)
 009C -0 A END; (* P *)
 0000 0- BEGIN
 000A -- I := 0;
 0010 -- P(DUMMY)
 001C -0 END.

 *AAEC PASCAL COMPILATION CONCLUDED *

 *NO ERRORS DETECTED IN PASCAL PROGRAM *

 The four hexadecimal digits on the side of the page indicate the
 relative addresses of variables, data and code, wherever appropriate.
 While variables are being declared with the var construct, the hex
 address will reflect the relative offsets from the start of the stack
 for the procedure being compiled. (A fixed amount of space is required
 for each procedure before variables can be allocated, and this is
 40(hex) bytes.)

 44

Pascal 8000 Reference Manual IBM 360/370 version

 For statements, the hexadecimal address indicates the relative
 offset from the start of the code for that procedure. The value shown
 is the offset at the start of each line of listing, before code has
 been generated for that line of Pascal source. These relative
 addresses are most useful for determining the size of procedures, as
 well as for relating to post-mortem dump information.

 The next two indicators are known as nest level indicators, and
 reflect the static block structure of a procedure. The left indicator
 is incremented, and printed, whenever a begin, loop, repeat, or case is
 encountered. On termination of these structures, with an end or until,
 the right indicator is printed, and the static level counter
 decremented. This scheme makes it very convenient to match begin - end
 pairs, while quickly pointing to missing end terminators. A correctly
 composed procedure should commence with a zero left indicator and
 terminate with a zero right indicator.

 The character that follows the nest indicator reflects static
 procedure levels. The character is updated for each nest level ('A'
 for level 2, 'B' for level 3, etc) and printed next to the heading and
 the begin and end associated with that procedure. It is therefore
 possible to see at a glance the static level nesting of each procedure.
 This indicator is also useful in finding missing end terminators.

 The input Pascal source line is printed following these indicators.
 Each line of source text is printed exactly as read. Blank input lines
 appear as such.

2. Listing control

 There are several options available for the programmer to control
 his output listing. These are indicated to the compiler by a '$'
 character in column one of the source input record, immediately
 followed by the option keyword. '$option' cards are not printed on the
 output listing. The options available are:

$title <title> replaces the title currently printed (if at all) with
 <title> and then skips to a new page. The title is
 printed at the top of each page, until a new $title
 record is encountered, or an $untitle record is found.
 Only the first 40 characters of the supplied title are
 relevant.

$eject causes the next line of listing to appear on a new page
 (unless that line is $untitle)

$space n n blank lines are printed in the program listing.

$untitle compiler-generated page skipping, and titling, is
 suppressed.

 45

Pascal 8000 Reference Manual IBM 360/370 version

3. Compiler options

 Several compiler options are provided in order to control the modes
 of compilation. Compiler options are specified by the first part of
 any comment. The general format is as follows:

 (*$x+,y-, ... <any comment> *)

 where x, y, ... are the compiler options described below, and the
 symbol '+' means the activation of the option, and the symbol '-' means
 the suppression of the option. The specification of options may be
 inserted anywhere in the program, so that users can control the code
 generation selectively over specific parts of a program.

Compiler options.

C indicates that the object code produced by the compiler
 should be listed in assembly language format. The
 default value is '-'.

L indicates that the source program should be listed. The
 default is '+'.

T indicates that code to provide run time checking should
 be generated. Examples of checking include:

 1) assignment of values to variables of type
 <subrange>.

 2) ensuring that array index operations are within
 the bounds of the array as specified.

 3) ensuring that case statement selection falls
 within the realm of one of the case tags.

 The default value is '+'.

U restricts compilation to the first 72 columns of the
 input record. The remainder of the record is effectively
 ignored, but listed by the compiler. The default value
 is '-', and the first 120 columns are relevant.

P instructs the compiler to produce the code necessary to
 generate a traceback and full post-mortem dump of local
 variables if an execution error were to occur. The
 default is '+'.

N instructs the compiler to produce the code necessary to
 generate a traceback (without dump of variables) if an
 execution error were to occur. (linkage-editor version
 only). The default is '-'.

 46

Pascal 8000 Reference Manual IBM 360/370 version

S the compiler will flag with a warning message all
 constructs that are not 'Standard Pascal'. The default
 is '-'.

4. Compilation error messages

 Errors detected by the compiler during compilation of a Pascal
 program will be flagged both by an error number and an error message.
 The erroneous line will be marked with an '@' pointing to just past the
 symbol in error on that line in the listing.

 A log of compile-time error messages that may have been generated
 throughout the program is printed at the conclusion of compilation.
 The compiler will print the text for each message only once, no matter
 how many occurrences of that error number appeared.

 Programs that have compiled with errors cannot be executed.

5. Execution summary

 In all cases where the runtime system completes execution normally
 (with or without Pascal errors) without a system abend, an execution
 summary of all steps is output to the SYSPRINT dataset. This gives the
 time taken for each step, plus an indication of the main storage used
 by the program, the stack and the heap for that step. Use of main
 storage for the runtime system, system I/O control blocks and other
 sundry operating system requirements is not included in this summary.
 Partitioning of storage into stack and heap usage may not be accurate,
 as it is determined by initialising the stack-heap area before the
 step, and considering the largest area remaining untouched after the
 step to be the unused area between the stack and the heap. Step timing
 includes the overhead of performing this initialising and examination.

6. Post mortem dump

 If any error condition is detected by the Pascal runtime system,
 execution terminates, and after printing the execution summary
 described above, the nature of the error is printed, followed by a
 post-mortem dump of the segments (procedures or functions) which were
 active at the time of the error. Only the innermost n1 and the
 outermost n2 segments are dumped, together with a count of the ones
 omitted. n1 and n2 both default to a value of 5, but they may be
 changed separately through the PARM field on the EXEC card. Offsets
 from the start of each segment to the call of the next or the location
 of the error are printed in hexadecimal, and may be related to the
 addresses printed on the left of the compiler listing of the relevant
 segment.

 Within each segment, a local variable dump is provided if the $P+
 option was specified (or implied by default) for compiling that

 47

Pascal 8000 Reference Manual IBM 360/370 version

 segment. Variables included in this dump are all those of types
 integer, real, char(EBCDIC character enclosed in quotes printed), alfa
 (8 characters enclosed in quotes printed), boolean (<TRUE> or <FALSE>
 printed), user-defined scalar variables (ordinal value followed by (S)
 printed), and pointer (hexadecimal value or <NIL> printed). Arrays
 (except alfa), sets and other user-defined structures are not included
 in the local variable dump.

 All stack and heap space is initialised at the start of a Pascal
 program execution so that all bytes contain x'7f'. If a local variable
 is found to contain this value, it is printed as <UNDEFINED>. Not all
 undefined variables will be printed in this way however, as stack
 initialisation is done at program-start time rather than at segment-
 start time. Thus if a segment call uses an area of stack which has
 been previously used by another segment, its local variables will be
 initialised to seemingly random rather than 'undefined' values.

 Error conditions which cause termination are of several types.
 Errors such as compile-time errors and program loading errors do not
 give the traceback dump. Errors such as value out of bounds, stack
 overflow or time overflow give a simple message followed by the
 traceback. Errors in using the file-system in an incorrect way give a
 message including the file-name referred to, followed by the traceback.
 Errors in calling a standard function with a value out of range give a
 message including the incorrect argument value, followed by the
 traceback. Program interrupts are trapped by the runtime system, and
 cause termination of the run, usually with a traceback. An initial
 printout for the interrupt gives the program-old psw, the general
 register values and an indication of whether the interrupt occurred in
 compiled code or in the runtime system. Storage contents surrounding
 the point of interrupt are printed if the interrupt is from compiled
 code, and the traceback as for other errors is then given. If the
 environment of the interrupt cannot be determined, a system abend is
 given with code 000.

 At the start of a step, the CPU time remaining for the job is
 determined, and a trap is set for about 10 seconds before this time
 expires. When this trap is sprung, an error message, followed by the
 post-mortem dump is printed. At this time, any local files which were
 open are closed and scratched. (At the time of writing, this does not
 work on SVS and MVS systems, and CPU time expiry results in a S322
 abend on these systems.)

 Of course the printing af the post-mortem dump relies critically on
 the integrity of the stack after the error has occurred, and a correct
 print-out may not be obtained if the stack has been corrupted. Stack
 corruption will rarely occur if the $T+ option is used. If stack
 corruption causes a program interrupt while trying to print a local
 variable dump, the dump for that segment is abandoned, and the next is
 attempted. If stack corruption is detected while trying to trace
 segment calls, the whole traceback is abandoned.

 48

Pascal 8000 Reference Manual IBM 360/370 version

 The post-mortem dump capability has proved most useful when
 debugging Pascal programs. It is at its most useful when used with the
 $P+ and $T+ options (which are the default), although these incur
 slight storage and execution speed penalties. The $P+ option incurs a
 time penalty of one instruction execution per segment call and a space
 penalty of 12 bytes per segment plus 12 bytes per local variable. The
 $T+ option incurs a time penalty of 5 machine instructions and a space
 penalty of up to about 26 bytes per bounded variable assignment, per
 array subscript evaluation, per case statement and per pointer variable
 reference.

7. Miscellaneous

1) The external file name "output" does not have to appear in the
 "program" parameter list, unless operations on the file "output"
 are to be performed.

2) External files do not have to be declared at level one in a
 program, but may be declared in procedures at any level. All the
 conventions regarding local files are applicable to external files,
 and further, a DD card designating a dataset is required for each
 external file referenced in the "program" parameter list.

3) The maximum amount of code that can be generated for each procedure
 is calculated by the formula:

 codemax = 4 * (7-level)k bytes

 Thus, the maximum of code that may be generated for the main
 program is 24k bytes. The mechanism of implementation of this
 extended addressing feature involves the use of spare 'display
 registers'. Some of the registers are also used for optimisation
 of the 'with' construct, as they can be used to store the base
 address of records currently being referenced.

 49

Pascal 8000 Reference Manual IBM 360/370 version

APPENDIX 2. File support

1) Files may be external or local. External files are named in the
 program header; local files are not.

2) Both external and local files may be declared in a procedure at any
 level. System control blocks are allocated for a file on the stack
 when the procedure containing the file declaration is invoked.
 Buffers are allocated on the stack when the first reset or rewrite
 to the file is issued. These areas are not however accessed
 directly from the procedure's display register.

3) External files are referred to by providing a DD statement which
 uses the filename as the ddname, except that the standard files
 input and output use the ddnames SYSIN and SYSPRINT respectively.
 Any DD statement supported by the QSAM access method may be used.

4) If local files are used, a DD statement with a ddname of 'LOCAL'
 must be provided. This statement should refer to a direct-access
 volume containing sufficient free space to hold all local files
 required. It will usually be of the form:

 //LOCAL DD UNIT=SYSDA,DISP=SHR,VOL=SER=volser

 Current implementation restrictions for local files are that no
 secondary extents may be taken, and all local files have an equal
 primary space allocation quantity. The primary space allocation is
 taken from the SPACE parameter on the LOCAL DD statement if it
 exists, otherwise a default value of 5 tracks is used. If DCB
 parameters are specified on the LOCAL DD statement, these must be
 suitable for all local files used. DSNAME must not be specified on
 the LOCAL DD statement.

5) If a long-jump or external jump is made to an outer procedure in a
 situation where files have been opened in intermediate procedures,
 then these files are correctly closed, and if local, are scratched
 at the time of the long-jump.

6) If premature termination of a program for any reason causes the
 printing of a 'Pascal Termination Log', then all files which were
 open are closed, and if local are scratched. If a system abend
 occurs, the files are not closed and any local files in use will
 remain allocated on the disk. Note that the time-limit condition
 is intercepted and local files are scratched. However, operator
 cancel, open failure or getmain failure, for example, will cause
 system abends, and may leave local files allocated. The
 possibility of getmain failure is particularly worthy of
 consideration; if a large number of local files are opened, enough
 space must be left outside the Pascal stack to build their system
 I/O blocks and channel programs. Space required for these is
 usually of the order of 100 bytes per buffer per file (2 buffers
 per file default).

 50

Pascal 8000 Reference Manual IBM 360/370 version

7) Implementation of local files is achieved through use of the DASD
 allocation and SCRATCH functions of OS. DASD allocation is done
 using SVC32 in the same way as it is used by the IEHMOVE utility
 program. A unique dataset name is constructed for each used local
 file as follows: the dsname generated for the LOCAL DD statement
 by the operating system has the form:

 SYSyyddd.Thhmmss.xxnnn.jobname.Rnnnnnnn

 where yyddd and hhmmss are the date and time of job initiation, xx
 is variable depending on the environment, nnn is a serial number,
 jobname is the name of the job, and nnnnnnn is a serial number.
 Through its use of variable fields, this name is different from all
 others in the operating system. Each local file is given a unique
 name built from this name by replacing the jobname field with
 Pnnnnnnn where nnnnnnn is a local file serial number. These
 dsnames still appear as temporary datasets to the operating sysem,
 and thus if any are inadvertently left allocated on the disk by
 premature termination of a job, they should in due course be
 scratched by whatever means is used by an installation to remove
 old temporary datasets.

8) An external file may be declared in more than one procedure or in a
 procedure that is invoked recursively. This will not normally be
 useful, but the effect will be that file positioning will be
 maintained for the outer procedure during its use by an inner one.
 If the file is used for output, the results are unpredictable.

9) A distinction is made between files of type "text" and files of
 other types. Both types are supported with the QSAM access method;
 text files using get-locate and put-locate, and non-text files
 using get-move and put-move.

10) For non-text files, support is provided for RECFM=F, FB or FBS.
 For input, the LRECL or BLKSIZE for RECFM=F must match the record
 size implied by the file declaration. For output, if RECFM is not
 specified, it is set to FB; LRECL (or BLKSIZE for RECFM=F) is set
 to the size implied by the file declaration. For RECFM=FB or FBS,
 if BLKSIZE is specified it must be a multiple of LRECL; if not
 specified it is set to the lowest multiple of LRECL greater than or
 equal to 2000.

11) For text-files, support is provided for all valid combinations of
 fixed, variable or undefined RECFM with blocked, standard, spanned
 or ASA control. Valid combinations are represented by F[B][S][A],
 V[B][S][A] or U[A]. The logical record length (or blocksize if
 RECFM is U or not B) may be specified and may not exceed 256. If
 LRECL is not specified, it is set to 132 + (1 if RECFM=A) + (4 if
 RECFM=V). If RECFM is not specified, it is set to RECFM=VBA. If
 RECFM=B and blocksize is not specified, it is set as for non-text
 files to the lowest multiple of LRECL not less than 2000. An
 exception to this rule is that for SYSIN, the default LRECL is 80.

 51

Pascal 8000 Reference Manual IBM 360/370 version

12) For output to a text file with RECFM=A, the carriage control
 character position is accessible to the user, and should normally
 be filled with a blank. The "page" function will cause the
 character written in the control position to be overwritten at the
 time the record is written. If a text field being written overruns
 the end of the record, the excess is placed on the following
 record.

13) For input from a text file with RECFM=A, the carriage control
 character will be read by the user as the first character of each
 record.

 52

Pascal 8000 Reference Manual IBM 360/370 version

APPENDIX 3. Linking to External Procedures.

 The linkage editor version of the Pascal 8000 system produces
 object code following the specifications of the IBM linkage editor.
 Separately compiled Pascal modules can therefore be linked
 together, and can link to object modules produced by other language
 compilers, such as the FORTRAN compiler, or to modules produced by
 the IBM Assembler.

1. How to specify that a module is external.

 If a procedure or function that has been developed independently
 of the current compilation is to be invoked, it must first be
 declared by the standard procedure/function heading, followed by
 the word "pascal" or "extern" (if the external routine is written
 in Pascal) or "fortran" (if the routine is written in FORTRAN or
 follows the FORTRAN argument passing conventions).

Examples:
 procedure plotxy(var x,y:real); fortran;
 function rand(x:integer) : real; fortran;

 Once an external routine has been declared in such a manner, it
 may be used in the same way as ordinary Pascal procedures and
 functions, with some restrictions detailed below.

 It should be noted that the standard IBM-defined parameter
 passing mechanism is used when invoking FORTRAN or Assembler
 routines (detailed in the IBM FORTRAN Programmers Guide). The
 external reference generated is to a CSECT with the name of the
 procedure truncated (or padded) to eight characters. Thus, in the
 above example, the linkage editor would expect to find external
 modules with the names "rand" and "plotxy", and will resolve all
 references to them.

2. Externally compiled Pascal procedures and functions.

 There are no restrictions to the form that an externally
 compiled Pascal procedure or function may take. The argument lists
 and function results are treated in exactly the same way as with
 "internally" compiled routines, and all scope rules apply as
 regards the use of the procedure name.

 There are, however, certain rules that must be followed in order
 to actually compile an external module. These are:

 1. The (*$E+*) option must occur before a procedure declaration.
 This signifies to the compiler that the first procedure following
 is to be compiled as an external module, and that there will be no
 further procedures or "main-body" after this procedure definition.

 53

Pascal 8000 Reference Manual IBM 360/370 version

 2. "value" statements are obviously not permitted. However,
 global type, constant and variable declarations are allowed.

 3. Only one "level one" procedure declaration and body is allowed
 per compilation i.e. that of the procedure which is to be regarded
 as external. However, the external procedure may have many levels
 on nested internal procedures within itself, and the usual syntax
 rules apply to these.

 4. No "main program", i.e. a dummy begin ... end. , is to be
 specified. This would serve little purpose.

 It should also be noted that an externally compiled procedure
 may have references to further externally compiled routines within
 it; no restrictions are imposed in this regard. Further, the
 externally compiled routine may be invoked recursively from within
 itself and from within any nested procedure declared within itself.
 The external procedure may also be passed as an argument to any
 nested procedure, with the usual scope rules applying.

Example.

 (*$E+*)
 program external(output);
 procedure incr (n:integer);

 procedure addto5(procedure g(integer));
 begin
 g(n+1)
 end;

 begin
 if n <> 5 then addto5(incr) else writeln(n);
 end;

This externally compiled procedure may be invoked by the program:

program callit;
 procedure incr(n:integer); pascal;
begin
 incr(1)
end.

 Externally compiled procedures may access the global variables
 of the calling program, as long as these are declared in exactly
 the same order in both the external and calling routines. This
 feature is useful when several separately compiled routines wish to
 access a common set of variables without passing all of them to

 54

Pascal 8000 Reference Manual IBM 360/370 version

 each routine as arguments.

 Note that once the (*$E+*) option has been set, it may not be
 reset, and such attempts will be trapped by the compiler. Further,
 procedures and functions cannot be passed as arguments to
 externally compiled routines.

 55

Pascal 8000 Reference Manual IBM 360/370 version

3. Externally compiled FORTRAN and Assembler routines.

 The linkage-editor version of Pascal 8000 permits linking
 between Pascal programs and any routine that comforms to the IBM
 FORTRAN calling sequence and argument passing conventions. Such
 routines can behave as procedures or functions, with function
 return types of real, integer and boolean being permissible.

 When using arguments passed to external routines, one must be
 aware of the internal representation of the standard types. This
 is given in the following table.

type bytes comment
integer 4
boolean 4 1=true,0=false (same as IBM FORTRAN)
char 4 EBCDIC code in low order byte
real 8 IBM floating point representation
set 8 bits representing elements, starting from left
scalar 4 ordinal value of occurrence, starting at 0

 For example, if a FORTRAN routine is called with a real
 argument, the argument should be declared as DOUBLE PRECISION in
 the called routine. "Packed" structures are represented by single
 bytes when the value of the packed item is in the range zero to
 255.

Examples.
 x : integer; (* 4 bytes *)
 a : packed array(.1..4.)
 of char (* 4 bytes *)
 b : array(.1..4.) of char (* 16 bytes *)
 c : real (* 8 bytes *)

 56

Pascal 8000 Reference Manual IBM 360/370 version

APPENDIX 4. How to Run the System.

1. The compile-and-go system.

 The load module PASCAL, from file 2 of the tape, works as the
 Pascal system driver. It has no specific knowledge of the Pascal
 compiler; it merely provides a running environment for programs
 compiled by the compiler - the compiler itself being one such
 program. This program requires a SYSPRINT dataset for its standard
 output. This dataset should have a usable print width of 133
 characters, including carriage control, and it may have a a RECFM
 of UA, VA, VBA, FA, or FBA. If no DCB parameters are specified,
 the default of RECFM=VA, BLKSIZE=141, LRECL=137 is used. If local
 files are to be used a LOCAL dd statement is also required. This
 should have the form:

 //LOCAL DD UNIT=3330,DISP=SHR,VOL=SER=volser

 If it is undesirable to mention a specific volume on this card, it
 could be replaced by:

 //$LOCAL DD UNIT=SYSDA,SPACE=(TRK,0)
 //LOCAL DD VOL=REF=*.$LOCAL,DISP=SHR

 Other datasets required are determined by the contents of the PARM
 field passed to the program. The complete specifications of the
 PARM field, which may not contain any blanks, are as follows:

 PARM=[n1] [,n2] [,] step1[=s1] [,step2[=s2]]

 [,step3[=s3]]etc

 where the square brackets denote optional parameters. The
 stepnames step1, step2 etc. are symbolic names given to Pascal
 programs which are to be run under the Pascal system. Each must
 consist of 1 to 7 characters, and must otherwise obey the rules for
 constructing ddnames. Three ddnames are associated with each
 stepname - by appending the symbols 1, 2 and I respectively to the
 stepname. The Pascal program loader accesses the first two of
 these, and they must describe the two datasets produced by the
 compiler when it compiled the program which is to be run. The
 first of these must have the attributes DCB=(RECFM=F,BLKSIZE=1024)
 (it may not have RECFM=FB), and the second is a text-file and
 usually has the attributes DCB=(RECFM=FB,LRECL=8) with any suitable
 blocksize. The third ddname describes a textfile containing the
 standard input file for the compiled program, and must be present
 if 'INPUT' is specified in the program header of the compiled
 program. If a Pascal program performs a reset or rewrite to any
 external file name, then a ddname the same as this file name must
 also be provided to refer to the external file.

 57

Pascal 8000 Reference Manual IBM 360/370 version

 For example, the Pascal compiler itself is a Pascal program, and
 if referenced by the stepname "CMP", needs the following ddnames:

CMP1,CMP2 describe the object code
CMPI describes standard input to the compiler and should be
 the textfile containing the source program whose
 compilation is desired. (Text files may have a record
 format of F, FB, V, VB, or U and a logical record length
 up to 256).
$PASOBJ1, These are external file names known to the compiler, and
$PASOBJ2 on which it produces the object code for the source
 program given on CMPI. They may describe temporary
 datasets if a compile and go run is desired; they may
 describe permanent datasets if the compiled program is
 to be saved.
$PASMSGS This external file name is a textfile on which the
 compiler expects to find error message texts if it needs
 them.

 Thus if a following step is given the name "$PASOBJ", it will load
 and execute the program just compiled. Standard input, if any, for
 this program will be accessed via the ddname "$PASOBJI".

 The optional parameters s1, s2 etc after each stepname are used to
 control the main storage usage for each step. Each must be a decimal
 integer, and describes the amount of storage (in multiples of 2K bytes)
 which is to be left free during the running of the step. This storage
 is required for system functions such as OPEN, CLOSE, ABEND etc. The
 remainder of the storage available within the user's region is
 allocated for the compiled code, the stack and the heap. If this
 parameter is not specified, it defaults to a value of 4 (implying 8K),
 and this has been found to be adequate for most purposes at the
 authors' installation. It may need to be increased if more temporary
 storage is needed for any one system function, or if heavy demands on
 permanent storage are made by the Pascal program - e.g. by opening a
 large number of local or external files (although file buffers are
 constructed on the stack, control blocks and channel programs
 associated with each buffer are constructed from the free storage).
 The control of main storage in this way means that for most
 applications the combined stack and heap size is specified by a single
 parameter - the REGION parameter on the EXEC statement.

 The optional parameters n1 and n2 in the PARM field are decimal
 integers, and control the printing of the post-mortem dump if any. The
 post-mortem dump routine, if invoked, prints the environment of the
 innermost n1 and the outermost n2 segments. If n1 and/or n2 is not
 specified, each defaults to a value of 5.

 If any of the defaults for the parameters n1, n2, or for the free-
 storage parameter s is required to be changed, the change may be
 effected by changing their values in the member PASDATA in the runtime
 system source library, reassembling the module PASCAL in this library,

 58

Pascal 8000 Reference Manual IBM 360/370 version

 and relinking the load module PASCAL or PASCALO.

2. The linkage-editor version.

 The load module PASCALC, from file 2 of the tape, contains both the
 runtime system and the compiled code of the compiler. This compiler
 and runtime system is functionally the same as the compile-and-go
 version, except that the load module is structured differently, and the
 format of compiled code follows the IBM object-module conventions
 rather than appearing as the two datasets produced by the compile-and-
 go version.

 Datasets required by this compiler are not determined by the parm
 field, and are as follows:

SYSPRINT a print output dataset, the same as for the compile-and-go
 version, normally SYSOUT=A.

SYSGO describes the dataset which will contain the object module
 produced by the compiler. This should have DCB attributes of
 RECFM=F or FB, and have LRECL=80, with any suitable blocksize.

$PASMSGS the text file on which error message texts are provided and
 used by the compiler in the same manner as for the compile-
 and-go version.

SYSIN the standard input to the compiler, containing the source
 program to be compiled.

 When a compiled program has been linkage-edited, it will need the
 following file-names:

SYSPRINT describes its standard output.

SYSIN describes its standard input.

LOCAL defines a device which may be used for local file allocation,
 as for the compile-and-go version.

 Any external files declared and used by the program will require
 matching ddnames.

2.1 Paramters.

 The parm field may be used to control the depth of traceback to be
 printed in a post-mortem dump, as well as main storage usage. The
 specification is as follows:

 PARM = [n1] [, [n2] [, [S]]]

 where each of the parameters n1, n2 and s is a decimal integer.

 59

Pascal 8000 Reference Manual IBM 360/370 version

 The parameters n1 and n2 control the post-mortem dump traceback
 printout, if any, in the same way as for the compile-and-go version.
 The parameter s controls the main storage usage for the jobstep in the
 same way as the parameters s1, s2, etc do for the compile-and-go
 version. If an external routine requires a significant amount of main
 storage, this parameter may need to be specified at a value greater
 than its default of 4 (implying 8K). Examples of routines which may
 require extra main storage are FORTRAN or Assembler programs which
 perform I/O (storage needed for buffers), or Assembler programs which
 use the GETMAIN macro directly or indirectly.

 When the runtime system of the linkage-edit version initialises
 itself, it checks for the presence of the FORTRAN runtime system (using
 a weak reference to the external name IBCOM#). (The FORTRAN runtime
 system will be present if an external FORTRAN routine uses any FORTRAN
 input/output.) If present, the runtime system initialises the FORTRAN
 system as well, to enable the FORTRAN I/O. However, program interrupts
 will be trapped by the Pascal system, and a Pascal traceback given,
 even if the interrupt occurs in the FORTRAN code.

 FORTRAN initialisation is performed using the following sequence of
 instructions:
 L R15,=V(IBCOM#)
 BAL R14,64(0,R15)

 This works for the G and H versions of FORTRAN under OS Release 21.8;
 it has not been tested in other environments.

 60

Pascal 8000 Reference Manual IBM 360/370 version

APPENDIX 5. Operating system dependence

"Local" file usage.

 To use local files under the MVS operating system, it is necessary
 to linkage edit the runtime system as an "authorised program". This is
 because DASD space allocation is done using SVC 32, which under MVS is
 a restricted SVC. When used in the foreground under TSO, local files
 work only if both the runtime system and the terminal monitor program
 are authorised. Local files work under all other systems without any
 changes required.

Time limit trap

 When the runtime system initialises itself, a trap is set for about
 10 seconds before job-step CPU time expiry. When a Pascal program
 (e.g. in a loop) springs this trap, a traceback with local variable
 dump is provided. Currently this time-limit feature does not work
 under SVS or MVS, and the job proceeds to a S322 abend. This will be
 fixed when the method of accessing the time remaining in the current
 job step in these systems is learnt. IBM Australia cannot help here -
 can anyone on the distribution list?

 61

Pascal 8000 Reference Manual IBM 360/370 version

 REFERENCES

 Dahl, O.-J., Dijkstra, E.W. and Hoare, C.A.R. (1972) ¿ Structured
 Programming. Academic Press.
 Habermann, A.N. (1973) ¿ Critical comments on the programming language
 Pascal. Acta Informatica, 3, 47-57.
 Hikita, T and Ishihata, K (1976) ¿ An Extended PASCAL and its
 Implementation Using a Trunk. Report of the Computer Centre
 University of Tokyo, Vol 5, 23-51.
 Hoare, C.A.R. and Wirth, N. (1973) ¿ An axiomatic definition of the
 programming language Pascal. Acta Informatica, 2, 335-355.
 Ishihata, K. and Hikita, T. (1976) ¿ Bootstrapping Pascal using a
 trunk. Department of Information Science, Faculty of
 Science, University of Tokyo.
 Jensen, K. and Wirth, N. (1974; Second Edition, 1975) ¿ Pascal: User
 Manual and Report. Springer.
 Kludgeamus, S. (1976) ¿ Sydney University, private communication.
 Lecarme, O. and Desjardins, P. (1975) ¿ More comments on the
 programming language Pascal. Acta Informatica, 4, 231-243.
 Wirth, N. (1971) ¿ The programming language Pascal. Acta Informatica,
 1, 35-63.
 Wirth, N. (1971) ¿ The design of a Pascal compiler. Software ¿
 Practice and Experience, 1, 309-333.
 Wirth, N. (1975) ¿ An assessment of the programming language Pascal.
 SIGPLAN Notices, 10, 6, 23-30.

 62

