ASPLMD10- 1
3.0/B
March, 1974

ASS| ST SYSTEM
PROGRAM LOG C MANUAL

Pr ogram&Docurnent ati on: John R Mashey
Proj ect Supervision : G aham Campbell
PSU Conput er Sci ence Depart nent

Thi s manual contains various information describing the interna
structure and techni ques used in the ASSI ST system It includes details
required for naintenance and extension of the system describes the
pur poses and nethods of all the nodules in the system and in general,
is required reading for any person perform ng nodification of the system
Depending on the intentions of the reader, certain sections of this
manual shoul d be consulted. All readers should begin by reading the
foll owi ng section GU DES TO EFFECTI VE USE and al so the section
| NTRODUCTI ON

@QUI DES TO EFFECTI VE USE

This section essentially describes how to use this nanual properly,
and shoul d be consulted before readi ng any other section or exam ning
t he ASSI ST source program

A WHO is to use this manual ?

This manual is definitely required reading for any person desiring
nodi fications to the ASSI ST source program for any reason. This
category includes rmaintenance of ASSI ST, extensions and addi ti ona
features to be added to ASSIST, and nodifications for handling
prograns for a given installation in a different manner than provided
for already. It also includes inprovenents in the code used internally,
and any nodifications needed to run ASSI ST in an operating system
envi ronnent not currently all owed.

Sone sections of this manual nmay be useful to the system
adm nistrator, as they can aid himin determning the systemresource
requi rements needed to nake effective use of ASSI ST, and in deciding
whi ch of the avail able options should be included in a given generation
of ASSIST for his installation.

The nore general sections of this manual should be useful to the
i nstructor of conputer science who wi shes to provide his students with
an exanple of a system for discussion, or with possible progranm ng
projects for themto do.

ASPLMD10- 2
B. WHAT does this nmmnual contain?

Each najor part of this manual describes one nmmjor division of the
ASSI ST program Section A of each part gives a general sumary of the
i nput, output, and overall control logic for the nodul es of that part.
Entry point hierarchy tables included here show the structure and
calling rel ationshi ps anbng t he various program conponents. Section
B. of each part then gives nore detailed information about each nodul e
in the given part of system |In general, the information is presented
in each section in order fromnost general to nost specific, to
facilitate easy location of any given nodul e or any code performng any
particul ar function.

The Appendi ces present detailed informati on which either concerns
many of the program nodul es in ASSI ST, or whose nature is such to
speci al consideration or treatnent independent of the rest of the
manual . The information in the Appendi ces should be especially usefu
to any person perform ng nodifcation to the ASSI ST source program

C. VWHEN should this manual be used?

Thi s manual may be consulted before generation of an ASSI ST system
is performed, in order to insure that the desired options are present.
Thi s manual definitely should be exam ned before reading the source
program of ASSI ST. While the source program contai ns extensive interna
docunent ati on, overall structure is detailed in this manual, and
provi des the easiest nethod of |ocating anything in the source program

D. WHERE does this manual fit into the literature?
The docunentation for the ASSI ST system consists of the follow ng:

ASSI ST | NTRODUCTORY ASSEMBLER USER S MANUAL

This manual gives all necessary information required to run jobs
under ASSI ST, describes the subset of S/ 360 Assenbl er Language accepted
by ASSI ST, and describes the output produced by ASSIST. THE USER S
MANUAL SHOULD BE EXAM NED BEFORE ANY OTHER DOCUMENTATI ON

ASSI ST ASSEMBLER REPLACEMENT USER S GU DE

This manual gives the information required to run a repl acenent
program for a nodule of ASSIST. It shows deck setup, debugging aids,
regi ster conventions, and error messages. It should be exam ned by
any instructor naking use of ASSIST for replacenent assignnents.

ASSI| ST SYSTEM DI STRI BUTI ON WRI TEUP

Thi s manual supplies the procedures required for generating an
ASSI ST system for given options and requirements. Concerning options
avai l abl e for generation, it briefly notes the nost |ikely conbinations
whi ch may be used. For unusual circunstances, the reader is referrred
to the ASSI ST PROGRAM LOd C MANUAL for further details on options.

ASPLMD10- 3
E. HOWshoul d this manual be used by various groups of people?

The reader intending to exam ne the ASSI ST source program shoul d
consult the follow ng:

| NTRODUCTI ON

APPENDI X | . GENERAL CONVENTI ONS AND | NFORMATI ON

PART | - MAIN CONTROL AND SERVI CE PROGRAMS - Section A
Dependi ng on area of interest, any of PARTs I-I1V and any of

t he Appendi ces.
ASSI ST source listing - should include at | east an assenbly
listing, and possibly a utility listing of the conplete source

The reader desiring nore detailed information about generation
options than supplied by the ASSI ST SYSTEM GENERATI ON MANUAL shoul d
exam ne the foll owi ng sections:

| NTRCDUCT! ON

APPENDI X || . SET VARI ABLES AND CONDI TI ONAL ASSEMBLY

APPENDI X VI'I. SYSTEM RESOURCE REQUI REMENTS, JOB CONTROL LANGUAGE
APPENDI X VI11. TIME AND RECORDS PROCESSI NG

The reader desiring only a general idea of the internal workings of
ASSI ST shoul d read t hese sections:
| NTRODUCTI ON
Section A of PARTs I.
descri be the overal
the system)

I, I'll, and possibly IV. (These sections
| control |ogic of each major division of

| NTRODUCTI ON

ASSI ST (Assenbl er System for Student Instruction and Systens
Teaching) is a small, high-speed, |ow overhead assenbl er/interpreter
system especially suitable for student use. It consists of five main

conponents, which are as foll ows:

. Main control and service prograns
This includes a job nonitor, input/output routines, scanning
and conversi on nodul es, and a debuggi ng/ dunmpi ng program
It may include object deck punch and | oader routines.

1. Assenbler for a subset of S/ 360 Assenbl er Langugage
Thi s conponent of the system assenbl es user source program and
creates resulting object programin nenory.

[1l1. Interpreter for S/ 360 object code
This nmodul e interpretively executes user object prograns,
permtting conplete control of the user program in addition
to execution of special debugging instructions.

I V. Replace nonitor

V. Macro Processor
Supports inline macros, open code conditional assenbly.

ASPLMD10- 4

TABLE OF CONTENTS
NOTE certain portions of this manual are not currently
avai | abl e (such as 110, 210, and 500). In general, these deal wth
program | ogi ¢ i nside individual nodules. The reader should consult the
conmments in Appendix V, or the source programitself, which contains
fairly heavy docunentation (28 per cent comrent cards).

GUIDES TO EFFECTIVE USE. e 010-1
INTRODUCTT O . . o e e e e e e e e e e e 010-3
TABLE OF CONTENTS. . .ot e e e e e e 010-4
PART | - MAIN CONTROL AND SERVICE PROGRAMS.o ii e 100-1
A OVERALL CONTROL LOG C. .ttt e e e e e e e e e e i 100-1
L. INPUT. 100-1
2. OUTPUT. . o e 100-2
3. OVERALL CONTROL LOG C SUMMARY.ottt 100-3
4. ENTRY PO NT H ERARCHY TABLE......... 100-6
B. ROUTINE/ SUBROUTINE LOG C. .. .ot e e e 110-1
1. ASSI ST - ASSIST System Main Control Program..............
2. AOBJDK - Punch and Load Object Decks......................
3. APARMS - ASSI ST PARM Field Analysis Routine...............
4. XXXXDECI - Decinmal Input Conversion.......................
5. XXXXDECO - Decimal Qutput Conversion......................
6. XXXXICCO - Input/Qutput Control........
7. XXXXSNAP - Debuggi ng CQutput, Conpletion Dump..............
8. XXXXHEXI - Hexadeci mal input conversion..........
9. XXXXHEXO - Hexadeci mal output conversion.........
10. XXXXSPI E - SPIE handeling nmodule.................
11. XDDGET/ XDDPUT - nonitor for XGET/XPUT............
12. XXXXGET - lnput module for XGET..................
13. XXXXPUT - Qutput nodule for XPUT.................

ASPLMD10- 5

PART Il - THE ASSEMBLER. e 200-1
A OVERALL CONTROL LOG C. .ottt e e e e 200-1

L. INPUT . 200-1

2. OUTPUT. . o 200-2

3. OVERALL CONTROL LOG C SUMMARY.ottt 200-3

4. ENTRY PO NT H ERARCHY TABLE.......... 200-5
B. ROUTINE/ SUBROUTINE LOG C. .. .ot e e e 210-1

1. BROPS2 - Base register processSing.ouuuuiuunennn.

2. CACONS - A-type constant processSing.......................

3. CBCONS - B-type constant processing.......................

4. CCCONS - C-type constant processing...............c.ouuu....

5. CDECNS - D&E-type constant processing.....................

6. CFHCNS - F&H type constant processing.....................

7. CNDTL2 - PASS Il constant processing control..............

8. CODTL1 - PASS | constant processing control..............

9. CPCONS - P-type constant processing..................u....

10. CVCONS - V-type constant processing................ouou....

11. CXCONS - X-type constant processing.......................

12. CZCONS - Z-type constant processSing.......................

13. ERRORS - Error code/scan pointer flagging.................

14. ESDOPR - External synbol dictionary operations............

15. EVALUT - General expression evaluation....................

16. AMOP1 - Pass | machi ne operations processing.............

17. I BASML - Pass | assenbl er operations processing...........

18. ICMOP2 - Pass Il machi ne operations processing............

19. IDASM2 - Pass Il assenbl er operations processing..........

20. INPUT1 - Read source cards, construct record blocks.......

21. LTOPRS - Literal constant table operations................

22. MOCON1 - Pass | main control program.....................

23. MPCONO - Assenbler overall main control program..........

24, MICON2 - Pass Il mamin control program....................

25. OPCOD1 - Mnenonic operation code lookup...................

26. OUTPUT - Format and print assenbly listing................

27. SCANRS - Scanning utility programs........................

28. SDTERM - Self-defining termevaluation....................

29. SYMOPS - Synbol table operations..........................

30. UTOPRS - UWility data set simulation......................

C. TABLE CONTROL SECTIONS. e

1. WWXTABL -

Assenbl er main communication table..............

ASPLMD10- 6

PART Il - THE INTERPRETER. e 400- 1
A OVERALL CONTROL LOG C..oittt et e e e e e e e e 400-1
L INPUT. 400-1
2. OUTPUT. . . e 400- 2
3. OVERALL CONTROL LOG C SUMVARY.ottt i 400- 3
4. ENTRY PO NT HIERARCHY TABLE. 400- 3
B. ROUTINE/ SUBROUTINE LOG C. . .ottt e e e e e e et e e i 400- 4
1. EXECUT - S/ 360 object code interpreter.................... 400- 4
C. OPTIONAL EXTENDED INTERPRETER., 400-5

PART 1V - THE REPLACE MONI TOR

1
2.
3. OVERALL CONTROL LOA C SUMVARY.ottt
4
B. ROUTINE/ SUBROUTINE LOG C. . ..ottt e e e e e e e e e e e e e
1. REMONI - Replace nonitor control..........................
C. TABLE CONTROL SECTIONS.
1. RFSYM5 - Replacable entry point names.....................
PART V. THE MACRO PROCESSOR

PART VI. - THE CROSS REFERENCE FACILITY. 580-1

ASPLMD10- 7

APPENDI X | . GENERAL CONVENTI ONS AND | NFORMATION. 600- 1
A, PROGRAM DOCUMENTATI ON. . . . ot e e 600-1
B. REG STER AND SUBROUTI NE LI NKAGE CONVENTIONS. 600- 3
C. NAM NG CONVENTI ONS. . . .o e e 600-5
D. CODI NG CONVENTI ONS AND TYPI CAL TECHNIQUES. 600- 6
APPENDI X 1'1. SET VARI ABLES AND CONDI TI ONAL ASSEMBLY............ 610-1
APPENDI X I I'1. DUMMY SECTIONS AND TABLES. 620-1
APPENDI X 1V. MACRO INSTRUCTIONS. e 630-1
APPENDI X V. ENTRY AND EXIT CONDITIONS. 640-1
APPENDI X VI. INTERNAL DEBUGGE NG AIDS. 660- 1
A. GENERATION OF DEBUG CODE.ottt e e e e e e 660-1
B. SET SYMBOLS AND MACROS USED IN DEBUGA NG 660- 2
C. I NDI VI DUAL SECTI ONS DEBUGGE NG CODE DESCRIPTION. 660- 3

1. MAIN CONTROL AND SERVI CE SUBPROGRAMS. i 660- 3

2. THE ASSEMBLER. 660-5

3. THE INTERPRETER. e 662-1

4. THE REPLACE MONITOR. . . . o e 662- 2

APPENDI X VI'I. SYSTEM RESOURCE REQUI REMENTS, JOB CONTRCOL LANGUAGE 670-1

A. SYSTEM RESOURCE REQUIREMENTS. e 670-1
B. JOB CONTROL LANGUAGE.ot e e e 670-3
C. OPTIONAL FACILITY STORAGE REQUIREMENTS. i 670-4
D. USI NG ASSI ST EFFECTI VELY | N DI FFERENT ENVI RONMENTS. 670-5
APPENDI X VI11. TIME, RECORDS, PAGES CONTROL.................... 680-1
A. TIME, RECORDS, PAGES CONTROL ALGORITHM 680- 2

B. RECOMMENDED OPTI ONS AND MODI FI CATION METHODS. 680- 4

ASPLMLOO- 1
PART | - MAIN CONTROL AND SERVI CE PROGRAMS

This part of the ASSI ST Program Logi ¢ Manual describes both the
overall flow of control and structure of the ASSI ST system and details
of various service prograns which may be used during execution. The
service subprograns noted include both those which are nornmally only
called fromthe main program and those which are available for use
by any other nodule in the ASSI ST system

The following sections detail the input to and output fromthe
entire ASSI ST system the overall |ogic of the main program ASSI ST, and
a hierarchy chart showing calling relationships between entry points
in the system Follow ng these sections are given nore detailed
descriptions of each nodule in the control and service program group

A. OVERALL CONTRCL LOG C
1. I NPUT
a. USER SOURCE PROGRAM OBJECT PROGRAM

The user source program witten in assenbler |anguage, is read
froma card reader, using a DDNAME of SYSIN. This is the only required
i nput to ASSIST. Sone versions of ASSIST nay contain a nodule used to
| oad obj ect decks (AOBJIN), in which case an object deck takes the place
of a source deck.

b. USER DATA (OPTI ONAL)

(Optional) data is read during user program execution, froma card
reader, using a DDNAME of FTO5F001, if possible. For jobs using the
BATCH option, or if two readers are not available (as in an OS-PCP
system), any data cards provided nust foll ow the user source program
prefixed by a $ENTRY card. Any nunber of user jobs may be bat ched.

c. USER PARM FI ELD (OPTI ONAL)

ASSI ST expects the operating systemto provide to it the contents
of the PARMfield fromthe user EXEC card, follow ng standard OS/ 360
conventions for accessing PARMfields. The user nay request various
options through the use of this field. The reader is directed to the
following witeup for a listing of the available options:

ASSI ST | NTRODUCTCRY USER S MANUAL - PART 111.

If ASSIST is generated to provide the replacenent feature, i.e.
&BREPL>0, the follow ng should be consulted for additional options:

ASS| ST ASSEMBLER REPLACEMENT USER S GUI DE

ASPLMLOO- 2
2. OUTPUT
a. PRI NTED OQUTPUT

ASSI ST prints all output on a line printer, using a DDNAVE of

FTO6F001. The printed output may require up to 133 characters,
i ncluding carriage control, although npbst output requires no nore than
121 characters. The foll ow ng output may be printed:

1) USER PROGRAM ASSEMBLY LI STI NG

2) USER PROGRAM PRI NTED OQUTPUT

3) USER PROGRAM COVPLETI ON DUMP

4) VAR OQUS HEADI NGS AND STATI STI CAL | NFORMATI ON

b. PUNCHED CQUTPUT

The user program may request that cards be punched during its

execution. |If possible, cards are actually punched, using the DDNAVE
FTO7F001. |If a DCB cannot be opened to this DDNAME, or if the NOPUNCH
PARM option is used, any card inages produced will not be punched, but
will be printed instead. It is also possible to create an ASSI ST which

del etes all punching code, thus saving space. A version of ASSIST can
be generated possessing the ability to punch object decks al so.

The reader should refer to the following witeup for a detailed
description of the output produced by ASSI ST, including the effects of
various PARM opti ons:

ASS| ST | NTRODUCTCORY USER S MANUAL - PART 111, PART IV.

The reader should also refer to APPENDI X VI1 of this manual, which
details the systemresources and job control |anguage required to use
ASSI ST. Briefly, ASSIST can function effectively with one card reader,
one line printer, less than 30K bytes of nenory for program and a
vari abl e ampbunt of storage for workareas and user program approxi nately
50-90 bytes per source statenent. No internediate storage is required.
if all possible options are allowed (as of version 2.1/ A), the assist
programrequires approximately 62K bytes. This is |larger thean al nost
any version which would actually be run, since few installations would
use all options.

ASPLMLOO- 3
3. OVERALL CONTRCL LOG C SUMVARY

The foll owing sumari zes the overall flow of control in the entire
ASSI ST system Since overall control resides entirely in the contro
section ASSIST, this section is essentially a brief summary of the |ater
section B.1 of this part. This section can be used to get a quick
overview, while the later section describes the ASSI ST control section
in nore detail

a. ENTIRE RUN I NI TI ALI ZATI ON

After receiving control fromthe operating system ASSIST first
sets initial values for any flags which nay be required to be set at
this time.

Certain operations occur only 1 tinme for an entire ASSI ST run, and
are thus described here, although they occur after the first case of the
processi ng described in b. below These include calling | NSUB ASVSI NI T,
whi ch obtains the largest single block of free storage available, then
returns sone to the operating systemfor buffers, nodules, etc. The
val ue returned can be controlled by the PARMfield FREE= opti on.

ASSI ST then calls entry XXXXINI'T of csect XXXXI OCO. This entry
OPENs the DCB's for the source reader (SYSIN) and line printer
(FTO6F001), and sets flags in AJOBCON denoting the success or failure of
OPENing the two DCB's. If either fails, ASSIST wites a nessage to that
effect on the systemlog, then termnates with a condition code of 16.

b. ASSEMBLY/ EXECUTI OV DUMP CYCLE (1 $JOB)

ASSI ST now makes 3 or 4 calls to routine APARMS, which is used to
scan optional paraneters (see PART 11l of USER S MANUAL). The first
call supplies default values and absolute linits on nunerical options,
and the second call processes the invoking PARMfield, if any exists.

If this is the first time through this process, the actions described
above in a. are perforned to initialize menory and i/o nodul es.

(This is done in the order given in order to allow optional paraneters
to influence this initialization).

At this point, ASSIST determ nes whether a BATCH run is in
progress. |If so, it reads cards until a $JOB card is found (1 NSUB
ASFLUSH), and calls APARMS with the parameters on the first such card
encountered, thus allowi ng user's in BATCH node to supply options.

APARMS is called a third time (NOBATCH) or fourth tine (BATCH) to
supply default values for any nunerical options.

As described in APPENDI X VII1Il, tinme, records, and pages lints are
cal cul ated, the ASSI ST header line printed on a new page, and either the
i nvoki ng PARM field (NOBATCH) or $JOB card (BATCH) added.

c. ASSEMBLY OF USER PROGRAM (OR LOAD OF OBJECT DECK)

ASSI ST then sets up the assenbler control table (VWKTABL csect,
AVWKTABL dsect) for use by the assenbler conponent of the system This
i ncludes setting limts on the nenory available to the assenbl er,
pl aci ng the address of the table control section into the appropriate
register (R12), and initializing any flag val ues which nay have been
provided by the user PARMfield. 1In addition, an STIMER nmacro may be
set to interrupt if the user overruns his tinme limt. The assenbler
mai n program (MPCONO) is then called to assenble the user program and
|l oad the resulting object code into the beginning of the single |arge
wor karea used by the system

ASPLMLOO- 4

If the user specified the OBJIN option (thus showi ng that an object
deck is supplied in place of the source deck), ASSIST skips the actions
descri bed above and calls AOCBJIN to | oad the object deck (assum ng that
ASSI ST has been generated to allow this option.)

After the user program has been assenbl ed, ASSI ST tests to see if
the user did not desire execution of his program or if the program has
becorme unexecut abl e because it contained too many errors. In this case,
execution and conpl eti on dunpi ng are ski pped, and section f. is done.

d. USER PROGRAM EXECUTI ON

If a BATCHrun is in progress, ASSIST requires that a $ENTRY card
be supplied after the user programto initiate execution, so it reads
cards until one is found. If a $JOB card is found first, it returns
to section b and begi ns processi ng of next run.

Using various values fromthe assenbler control table AVWKTABL,

ASSI ST creates an execution control block (ECONTRCL), which contains al
necessary information for describing the user programand how it should
be treated. This table is actually located in a part of the assenbler
control table, to save space. After initializing such values as the
pseudo registers, Program Status Wird, etc, in ECONTROL, ASSIST calls
entry XXXXSNI N of csect XXXXSNAP, which perforns any needed
initialization for this csect, which is used to perform execution-tine
regi ster and storage dunping. ASSIST tests to nake sure that neither
the tine [imt nor the record Iimt have already been exceeded during
assenbly. If so, user program execution is skipped, and section f. is
done.

ASSI ST flags the user programin execution, and calls EXECUT
which is an interpreter for S/ 360 object code. The user programis then
interpretively executed. The interpreter may call entries XXXXREAD,
XXXXPNCH, and XXXXPRNT of csect XXXXIOCO to read cards, punch cards, and
print lines for the executing user program EXECUT nay al so call csects
XXXXDECI and XXXXDECO to perform deci mal conversions for the user, and
may call XXXXSNAP csect to supply execution-tinme dunps of registers and
st or age.

Interpretation of the user object program continues until sone
error occurs, or until the program branches to the location originally
given to it as a return address. Errors include programinterrupts,
overrrun of instruction count limt, overrun of record lint, and
possibly overrun of time linmt (See section H for this). After setting
appropriate condition flags, EXECUT returns control to ASSI ST.

e. USER PROGRAM COWVPLETI ON DUMP

I f user execution term nated properly, a nmessage is printed to this
effect. O herwi se, XXXXSNAP csect is called using a special type of
call to the XSNAP macro, which produces a user conpletion dunp instead
of normal XSNAP out put. Depending on options supplied by the user
XXXXSNAP prints either a full dunp (Program Status Wrd, Conpletion
Conpl eti on Code, Instruction Trace, User Registers, and User Storage),
or a short dunmp (all parts of a full dunp except User Storage).

ASPLMLOO- 5
f. BATCH RUN TESTI NG

ASSI ST prints a nessage if the user has exceeded either a tine or
record limt. If the run is not a BATCH run, ASSI ST term nates (see
section g.)

ASSI ST now returns to section b to search for the next $JOB card.
If ASSI ST ever encounters either a real end-file or a $STOP card while
searching for a $JOB or $ENTRY card, the run is term nated at that
poi nt .

g. TERM NATI ON

ASSI ST calls XXXXFINI entry of XXXXI OCO, which closes all DCB' s
whi ch have been OPENed. The return code is set to O to indicate a
successful run, and all acquired storage is returned to the operating
system ASSI ST then returns control to the calling program

h. TI MER RUNOUT PROCESSI NG

If ASSIST is generated with one of the options providing timng
for a user program an STIMER exit routine may be executed. |If this
occurs, the exit routine tests a flag to determine if the systemis
currently executing a user program |If so, a flag is set in the
execution control block ECONTROL. The interpreter EXECUT tests this
flag after every successful branch by a user program and term nates
user program execution if the flag has been set.

If the user programwas still being assenbl ed, ASSI ST sets the
"STOP' flag in the assenbler control table, which term nates assenbly
when the next statenent is encountered during either assenbly passes.

ASSI ST al so sets the ' RECORDS EXCEEDED flag, which is tested by
the printer/punch i/o nobdules. This is sufficient to term nate the
user dunp if it is being produced.

See APPENDI X VI11 for a conplete description of tiner/records/pages
control, as a nunber of different effects can be obtai ned by using
various conbi nati ons of generation options and PARM val ues.

ASPLMLOO- 6

4. ENTRY PO NT H ERARCHY TABLE

The following lists all entry nanes which may be call ed duirng
the course of an entire ASSIST run, excluding internal nodul es of the
assenbl er section of ASSIST, which has its own table (see PART II,
section A.4.) The entries are listed in order by level, where the
[evel is the maxi mum nunber of nodules in a calling chain above the

given nmodule, i.e., ASSIST has a |level of 0 because it is the main
program The entries are listed first by level, then al phabetically
within each level. Under each entry are listed the entries it nmay call,

first by level, then in al phabetical order. Certain entries nay only
be called by use of certain macro instructions, in which case the macro
nanes are also given. Any entry which calls no others is flagged with
an asterisk, for ease of use in tracing calling chains.

LEVEL O ENTRI ES

ASSI ST - ASSI ST system main control program
1 AOBIJIN, ACDECK, APARMS, EXECUT, MPCONO, XXXXFI NI *, XXXXI NI T*,
XXXXSNI N
FSORC(XXXXSORC) *, XSNAP(XXXXSNAP)
3 $PRNT(XXXXPRNT) *

LEVEL 1 ENTRI ES

AOBJIN - Qbject Deck Input (only if &OBJI N=1)
2 $SORC(XXXXSORC) *, XSNAP(XXXXSNAP)
3 $PRNT(XXXXPRNT) *

ACDECK - (hj ect Deck Punch (only if &$DECK=1)
2 $PNCH(XXXPNCH) *
2 SREAD(XXXXREAD) *, XSNAP(XXXXSNAP)

APARMS - ASSI ST PARM field anal ysis routine
2 XDECI (XXXXDECI) *

EXECUT - ASSI ST S/ 360 object code interpreter
2 XDECI (XXXXDECI) *, XDECO(XXXXDECO) *, XHEXI (XXXXHEXI) *
2 XHEXQ(XXXXHEXO) *, $PNCH(XXXXPNCH) *, XSNAP(XXXXSNAP)
2 XSNAP(XXXXSNAP)
3 $PRNT(XXXXPRNT) *

MPCONO - ASSI ST assenbl er nain control program
(**Note, the following Iist includes any entries called by any
sections of the ASSI ST assenbler. See assenbler hierarchy
table in Part 11, section A 4. for details).

1 REFAKE (only if &$REPL>0. Also note that this call only
occurs during a replace run, and does not appear in the
actual call sequence, due to adcon nodification.)

2 RESYMB* (&$REPL=2), $SORC(XXXXSORC) *

3 $PRNT(XXXXPRNT) *

ASPLMLOO- 7

REENDA - Post Assenbly Replace Mnitor (only if &SREPL>0)

3 $PRNT(XXXXPRNT) *

7 SYFIND* (entry point inside csect SYMOPS of the assenbl er)
REFAKE - Replace Mnitor Call Interception (only if &$SREPL>0)

2 XDECQ(XXXXDECO) *, XSNAP(XXXXSNAP)

3 $PRNT(XXXXPRNT) *
REI NTA - Pre-Assenbly Replace Mnitor (only if &SREPL>0)
XXXXFI' NI * - Finish up input/output control - CLOSE DCB's
XXXXINIT* - Initialize input/output control - OPEN DCB's

XXXXSNIN* - [nitialize XXXXSNAP npdul e before user execution.

LEVEL 2 ENTRIES
RESYMB* - Replace Monitor Call Allowed Lookup (only if &BSREPL=2)
XXXXDECI * - Decimal |nput Service Program (XDECI macr0)
XXXXDECO* - Decimal Qutput Service Program (XDECO macr o)
XXXXHEXI * - Hexadeci mal | nput Service Program (XHEXI macr o)
XXXXHEXO* - Hexadeci mal Qutput Service Program (XHEXO nacr 0)
XXXXPNCH* - Punch card service program ($PNCH nacr o)
XXXXREAD* - Read data card service program ($READ nacr o)

XXXXSNAP - Create debuggi ng out put, conpletion dunp (XSNAP nacr 0)
3 $PRNT(XXXXPRNT) *

XXXXSORC* - Read source card service program ($SORC nmcr o)

LEVEL 3 ENTRI ES:

XXXXPRNT* - Print a line service program ($PRNT nacr o)

ASPLM200- 1
PART Il - THE ASSEMBLER

The assenbl er section of ASSIST is a high-speed two-pass assenbl er
whi ch produces an object programdirectly in nmenory, ready to be
interpretively executed. For the assenbler |anguage accepted by this
assenbl er, see the ASSI ST | NTRODUCTORY USER S MANUAL. This section of
t he manual gives first an overview of the internal workings of the
assenbl er, then descriptions of the logic for each separate contro
section in the assenbler.

A. OVERALL CONTROL LOG C
1. I NPUT
a. Address of primary assenbler table (AVWKTABL DSECT) .

The calling program passes to the main program of the assenbler the
address of a table which contains all comunications areas, address
constants, useful constants, and sonme workareas. The calling program
fills in sone values before calling the assenbler. These val ues

i nclude the foll ow ng:

Two words are given the values of low and high linmts of a single
| arge wor karea which may be used by the assenbler.

Two bytes are given values of various bit flags which determ ne
exactly what running node the assenbler will use, and what options
will be in effect.

A halfword is given the value of the nmaxi mum nunber of errors
whi ch can occur and still pernmt execution.

b. Deck of assenbly | anguage source cards.
The assenbl er source deck is read using the $SORC macro. This deck is

term nated by an END card, end-of-file indicator, or ASSIST interna
control card ($JOB, $ENTRY, or $STOP card used in BATCH run).

ASPLM20O- 2
2. OUTPUT
a. Source listing.

The ASSI ST source listing resenbles the standard assenbler listing
very closely, but may be omtted if the NOLI ST option is specified.
Al statements which are flagged are always printed, regardl ess of the
status of print control.

The assenbler prints various statistics at the end of the listing
whi ch note the nunbers of errors and warnings, and describe the anount
of core storage required to performthe assenbly.

b. Object program

The object programis produced at the begi nning of the dynanm ¢ workarea,
and is ready for execution at the end of the assenbly. The object
programis not created if NOLOAD is specified in the user PARM field.
The assenbl er al so stops produci ng code if the nunber of errors exceeds
the imt at any tine.

c. Values in main assenbler table.

The assenbl er sets various flags and values in the nmain assenbl er table,
whose address was passed to it originally. These values are then used
by the calling program and include the follow ng:

Two bytes of flag bits (same as those passed in, but with nore
bits possibly set). One bit notes whether the assenbl ed program shoul d
be permitted to be interpreted.

Two words give the real low and high linmts of the assenbl ed
programin menory.

Two words give the low and high limts of the program as assenbl ed,
i.e. the addresses appearing in the user assenbly |isting.

One word gives the relocation factor applied to the user program
addresses to obtain the correspondi ng real addresses in nenory.

One word gives the entry point address in the user program which
is either the first byte of the user programor an address given on a
user END card.

A hal fword gives the nunber of statenments in the assenbly, for
possi bl e use in calculating assenbly rates.

The assenbl er does not return a return code in register 15; all
information to be returned is placed in the main assenbler table.

ASPLM200- 3
3. OVERALL CONTRCL LOG C SUMVARY
a. MPCONO - ASSEMBLER MAI N PROGRAM

The main programinitializes sone areas of the main assenbler
tabl e AWAKTABL, sets a SPIE to trap interrupts, initializes the program
mask, and then calls the remaining subroutines. After printing the
storage usage, it returns control to the calling program

MPCONO calls all entry points in the assenbler which are required

to be called in a fixed order. The entry points then fall into the
fol |l owi ng groups:
1) PASS | initialization entries.

I
2) PASS | main control (MOCONL csect).

3) PASS | ending, PASS Il initialization entries.
4) PASS Il main control (MICON2 csect).

5) PASS Il ending entries.

b. MOCONL - PASS | MAIN CONTROL PROGRAM

MOCONL receives control after all initialization has been done,
both for the overall assenbly, and for each subroutine requiring it.
It then controls the first pass of the assenbly, causing source cards
to be read and scanned until an END card is found, after which it
returns control to the main program MPCONO.

MOCONL begins the cycle for each source statement by calling the
entry I NCARD, which reads a source statement, and builds the required
record blocks for the statement. The record bl ocks include a bl ock
for the source imge and required flags (RSBLOCK), an optional bl ock
for continuations and sequence nunbers (RSCBLK), an optional block for
error code/scan pointer pairs (REBLK), and an optional block for
i nformati on depending on the type of operation code (RCODBLK). The
RSBLOCK for a statenent includes bit flags which note the existence of
any other blocks for a statenent. |NCARD builds an RSBLOCK and possi bly
an RSCBLK if required. |If it encounters an end-of-file indication
while reading, it creates a dummy END card, since MOCONL executes unti
it finds an END card.

MOCONL now checks the current statenment for being a coment card,
and scans for a |label on the statement. |If a legal label is found, it
calls SYENT1 to enter the |abel into the synbol table (but does not
define the synmbol at this tine). The address of a label in the synbol
table is saved in the nain assenbler table, where it can be accessed by
ot her nodul es.

MOCONL now scans for an operation code in the statement. |If one
is found, it calls OPFIND to determ ne whether the opcode is |legal, and
if so, which one it is. OPFIND returns the address of an opcode contro
table entry (OPCODTB), which contains various flag val ues (3 bytes).
Anmong other things, the first two bits of one of the bytes detern nes
what type of instruction has been found

MOCONL now scans for an operand field, setting the scan pointer to
the address of the first blank after the opcode if there is no operand.

ASPLM200- 4

The type of instruction is determ ned, and the proper second-|eve
subroutine is called to process the statement (I AMOP1 for machi ne
operations, |IBASML for assenbl er statenents). Each second-|evel program
perforns any location counter alignnment required for the statenent,
perforns some scanning of the statenent, depending on its type, and
determ nes the total length of the statement to be added to the | ocation
counter. Each creates a record code block for variable data (RCODBLK),
and returns the address of it to MOCONL.

MOCONL conpl etes the RCODBLK by pl acing the beginning | ocation
counter value for the statement in the block, and al so places this val ue

in the synmbol table entry for the statenent |abel, if there was one.
The | ocation counter is increnented, and UTPUT1 is ccalled to save all o
the record bl ocks which exist for the statement. |If the statenent was

an END statenent, MOCONL returns control to MPCONO; otherwise it repeats
t he above process for the next statenent.

See part V. for MACRO Processing description in MOCONL.
c. MICON2 - PASS || MAIN CONTROL PROGRAM

MICON2 is called after all of the PASS | ending routines and PASS
Il initialization routines have been called. After brief initialization
of its own, it enters a loop, one tine for each statenent.

MICON2 first calls UTGET2, which returns either an indication that
no statenents are left to assenbler, or the addresses of all existing
record bl ocks for the next statenment. UTGET2 al so restores the record
error block (REBLK) to its place in AVWTABL (AVREBLK), if the REBLK
al ready exi sts.

MICON2 tests for the existence of a record code bl ock (RCODBLK)
If none exists, the statenent was either a comment or had an unknown
opcode, so MICON2 just calls QUTPT2 to fornmat and print the statenent,
since no further processing can be done for it. |f an RCDOBLK exists,
MICON2 sets the | ocation counter formthe value saved in it, sets the
scan pointer to the scan pointer saved in the RSBLOCK, and then calls
the appropriate second-level routine to process the statenent.

The second-1evel routine (ICMOP2 for machine instructions, | DASM
for assenmbler instructions), perforns any required operand processing,
then calls UTPUT2 to | oad any assenbl ed obj ect code, and OQUTPT2 to
format and print the statement, with any error nessages required.

After all statements have been processed, MICON2 aligns the highest
| ocation counter value to a doubl eword boundary, then returns control to
MPCONO.

ASPLM200- 5
4. ENTRY PO NT H ERARCHY TABLE

The following table lists all entry points called during the course
of an assenbly. The entries are listed in order by |evel, where the
level of a nodule is defined to be the maxi mum nunber of mobdules in a
calling chain above the given nodule, i.e. the main programhas a | eve
of 0. The entries are listed first by level, then in al phabetica
order within each level. Under each nodule are listed the entries that
it may call, by level, then by al phabetical order. Nanmes preceded by
"M instead of a |level nunber are names of nmacros which call intrinsic
nodul es, whose names are also given. For ease of use, any entry which
calls no others in the assenbler is flagged with an asteri sk.

LEVEL O ENTRI ES
MPCONO - assenbler main control program
1 BRINIT*, ESINT1*, LTINT1*, LTEND1*, MOCON1, MICON2, OPI N T*,
1 QUEND*, QU NT*, SYEND2*, SYI NT1*, UTEND2, UTI NT1, UTEND1

6 ERRTAG
M $PRNT(XXXXPRNT)

LEVEL 1 ENTRI ES

ESI NT1* - pre-pass | external symbol nmodule initialization

LTENDL* - end of pass | for literal table processor

LTINT1* - pre-pass | literal table processor initialization
MOCONL - Pass | main control program
2 | AMOP1, |BASML, |NCARD, OPFIND*, UTPUT1*
4 SYENT1*
5 ERRLAB
6 ERRTAG
M $PRNT(XXXXPRNT)
MICON2 - Pass Il nain control program
2 |1CMOP2, | DASM2, UTCET2*
5 QUTPT2*
OPINIT* - initialize opcode table processor

OUEND2* - end of assenbly for output formatting processor
M $PRNT(XXXXPRNT)

QUI NT1* - pre-pass | output processor initialization
SYEND2* - end of assenbly for synbol table processor
SYI NT1* - pre-pass | synbol table initialization

UTEND2 - end of assenbly for utilities nodule (code production)
5 UTPUT2*

UTEND1* - ternminate pass |, initiate pass Il for storage utilities
3 XXXXDKE1

UTINT1* - pass | initialize utilities routines
3 XXXXDKOP

ASPLM20O- 6

LEVEL 2 ENTRIES

| AMOP1 - Pass | mmchine instruction scanning
3 LTENT1l, SCANEQ
6 ERRTAG
| BASML - Pass |l assenbler instruction scanning and processing
3 ESCSEC*, ESENX1, LTDWP1*
4 CODTL1
5 CCCON1*, ERRLAB
6 ERRTAG*, EVALUT
7 SDBCDX, SYFI ND*
8 SDDTRM
ICMOP2 - Pass |l machine instructions - operand scanni ng, assenbly
3 BRDI SP*, LTGET2*
5 QUTPT2*, UTPUT2*
6 ERRTAG", EVALUT
7 SDBCDX, SYFI ND*
8 SDDTRM
| DASM2 - Pass |l assenbler instructions - scanning and assenbly
3 BRDROP*, BRUSI N*, ESENX2, LTDWP2
4 CNDTL2

5 CCCON2*, OQUTPT2*, UTPUT2*
6 ERRTAG, EVALUT

I NCARD - input ofsource cards, construction of record bl ocks
6 ERRTAG
M $SORC(XXXXSORC)

OPFI ND* - | ook up opcode in opcode table

UTGET2* - Pass Il retrieval of record bl ock addresses
3 XXXXDKRD

UTPUT1* - Pass | saving of record bl ocks in dynam c workarea
3 XXXXDKWI

LEVEL 3 ENTRI ES
BRDI SP* - decode address into base-displacerment form
BRDROP* - drop a register frombase register availability

BRUSI N*

allow a given register to be used as a base register
ESCSEC* - external synbol nanipul ation - START, CSECT, DSECT

ESENX1L - ENTRY, EXTRN processing during Pass |
4 SYENT1*

ESENX2 - ENTRY, EXTRN processing during Pass |
4 SYENT1*
6 ERRTAG
LTDMP1* - calculate literal pool length during Pass |

LTDMP2 - have a literal pool assenbled and printed during Pass II

4 CNDTL2

ASPLM20O- 7
LTGET2* - retrieve program address of a given literal, Pass Il

LTENTL - scan literal during Pass |, enter into literal table
4 CODTL1

LTGET2* - retrieve program address of a given literal, Pass Il

SCANEQ - scan expression until = or blank found
7 SDBCDX

XXXXDKEl-term nate wite phase, initiate read phase during
disk utility run

XXXXDKOP-initialize disk utility during disk utility run
XXXXDKRD-read a buffer fromdi sk during disk utility run

XXXXDKWI-write a buffer to disk during disk utility run

LEVEL 4 ENTRI ES

CNDTL2 - assenble code for DC or literal constant, have it printed
5 CACON2, CBCON2*, CCCON2*, CFHCN2*, CPCON2*, CVCON2, CXCON2*,
5 CZCON2*, QUTPT2*, UTPUT2*
6 CDECN2, ERRTAG

CODTL1 - scan DS, DC, literal constant, build OCNCBLOCK for it
5 CACON1, CBCON1*, CCCON1*, CDECN1*, CFHCN1*, CPCON1*, CVCONL*,
5 CXCON1*, CZCONL*
6 ERRTAG', EVALUT
8 SDDTRM

SYENT1* - enter synbol in synbol table return @table entry for it

LEVEL 5 ENTRI ES

CACONL - Pass | A-type constant processor
6 SCANCO

CACON2 - pass Il A-type constant processor
6 EVALUT

CBCONL* - pass | B-type constant processor
CBCON2* - pass ||l B-type constant processor
CCCONL* - pass | C-type constant processor
CCCON2* - pass Il C-type constant processor

CDECNL - pass | D and E-type constant processor
6 CDECN2

CFHCN1* - pass | F- and H-type constant processor

CFHCN2* - pass Il F- and Htype constant processor

CPCONL* - pass | P-type constant processor

ASPLM20O- 8

CPCON2* - pass Il P-type constant processor
CVCONL* - pass | V-type constant processor
CVCON2 - pass Il V-type constant processor
7 SYFI ND*
CXCONL* - pass | X-type constant processor
CXCON2* - pass | X-type constant processor
CZCON1* - pass | Z-type constant processor
CZCON2* - pass Il Z-type constant processor
ERRLAB - flag a | abel error, saving scan pointer
6 ERRTAG
QUTPT2* - format and print a statement, wth error nessages
M $PRNT(XXXXPRNT)
UTPUT2* - |oad and duplicate object <code, filling unused space
LEVEL 6 ENTRI ES
CDECN2 - pass Il D and E-type constant processor
8 SDDTRMW
ERRTAG* - <create and save a scan pointer/error code pai r
EVALUT - general expression evaluator routine
7 SDBCDX*, SYFI ND*
SCANCO - scan expression until comma or blank found
7 SDBCDX*

LEVEL 7 ENTRI ES

SDBCDX -

determ ne type of self-defining term cal

8 SDBTRM‘, SDCTRMF, SDDTRM, SDXTRIW

SYFI ND* -

find synbol in synbol table,

LEVEL 8 ENTRI ES

SDBTRMF -

SDCTRMF -

SDDTRMF -

SDXTRMF -

eval uate binary self-defining term
eval uate character self-defining term
eval uate decimal self-defining term

eval uat e hexadeci mal self-defining term

return @table entry,

ri ght processor

if any

ASPLMA00- 1
PART I'll - THE | NTERPRETER

The interpreter section of ASSIST is a programwhich interpretively
executes S/ 360 object code. It can perform all of the standard
instruction set, and may permt decinmal and fl oating point operations if
these are desired. Although privileged operations and SVC calls are not
performed at the current time, conditional code exists in the program
for decoding them and branching to individual sections of code to do
each individual instruction. The interpreter also allows a nunber of
sinmple 1/ O debuggi ng, and conversion pseudo instructions, which can be
handled as nacro instructions by regular S/ 360 assenblers, t hus
mai nt ai ni ng conpatibility.

A. OVERALL CONTRCOL LOG C
1. I NPUT
a. ADDRESS OF EXECUTI ON CONTRCOL BLOCK (ECONTRCL)

Al'l execution paraneters and workareas are contained in one block,
which is passed to the interpreter by the calling program This design
makes for flexible use of the interpreter for several differing
pur poses, and keeps the interface between the interpreter and the rest
of the systemat a minimum This table contains the following itens of
special inportance, in addition to other things:

A bl ock of four sinmulated floating point registers. The val ues
here are used to initialize the real floating point registers, and the
regi sters are stored back here when execution is conpleted.

A bl ock of 16 sinulated general purpose registers. These contain
the initial values of the user registers on input, contain the contents
of the user registers during execution, and are used to produce the
conpl etion dunp after execution term nates.

A simul ated Program Status Wrd.

Various byte flags for execution node, special error codes, debug
control, and conpletion dunp condtrol

Two instruction count limts, the first giving the maxi num nunber
of instructions to be executed, and the second for decrenenting and
testing.

Two addresses giving the lower and upper limts for a storage to
be printed in a conpletion dunp. These addresses may be changed during
user program execution by execution of an XLIMD pseudo instruction.

ASPLMA00- 2

A block of six addresses originally created by the ASSI ST
assenbl er, which describe the storage limts (both real and as given in
the assenbly |listing), entry point addr ess, and execution-tine
relocation factor for the user program

An instruction stack (actually a circular linked list), in which
is kept the last ten instructions done, with their addresses. This is
used by the conpletion dunp routine to produce an instruction trace.

Various other work words and execution-tine values are also kept
i n ECONTROL.

b. DECK OF DATA CARDS

An (optional) deck of data cards may be read by the interpreter
for the user program An XREAD pseudo instruction in a wuser program
causes execution of the code generated by a $READ macro in the
interpreter, which obtains the next <card, or gives an end-of-file
i ndi cation. Under no circunstances is it possible for the wuser
programto read beyond the end-of-file.

2. QU PUT
a. PRI NTED OQUTPUT

The interpreter may have output printed, either wusing a $PRNT
macro in response to an XPRNT insruction in the user program or using
an XSNAP nmacro to perform services requested by an XDUWP instruction

b. PUNCHED OQUTPUT

The interpreter may have cards punched, using an $PNCH nmcro when
t he user program contains an XPNCH pseudo instruction. Note that in
sonme circunstances, the cards to be punched nay be listed on the
printer instead. See the | NTRODUCTORY ASSEMBLER USER s MANUAL, part
I11, regarding the NOPUNCH option in the user PARM fi el d.

c. VALUES I N THE EXECUTI ON CONTROL BLOCK (ECONTROL)

The interpreter sets various flags and values in the execution
control block. These values may then be tested by the calling program
to determne the reason for conpletion, and are used by the conpletion
dunp programto produce its output. Most of the variables were noted
above in section A.l.a of this part. QO hers include the follow ng:

Special error flag byte, which notes either a normal term nation
by a return to the address originally supplied to the user programas a
return address, or else a code indicating one of several specia
conpl etion codes (such as exceeding time or records, branch out of
range, and others of type COWVPLETION CODE ASSIST =).

The address of a conpletion code/error nessage block, which my
be used by the conpletion dunp routine.

ASPLMA00- 3
3. OVERALL CONTRCL LOG C SUMVARY

The interpreter begins by initializing various values in the
execution control block ECONTROL, and setting registers for its own use.
After all initialization is conplete, the actual interpretation begins.

The next instruction to be executed is fetched from user storage,
and placed in the next instruction stack entry (ECSTACKD), along wth
the address of the instruction, condition code, and program nask. Sone
prelimnary decoding is done, which increnents the location counter by
the Iength of the instruction, and sets up registers with several codes
i ndicating actions to be perforned for the instruction. A four-way
branch is taken to separate the instructions into the following types:
RR, RX, SI-RS, SS, each of which has a primary decoding section.

At the primary decoding section for each type, comon processing
for all instructions of that type is perforned. This includes decoding
regi ster addresses, sone fetching of sinulated register val ues, decoding
operand addresses, and checki ng of storage addresses for legality. After
this has been done, each primary decodi ng section branches to one of a
nunber of secondary decodi ng sections belonging to it. Each of these
sections conpletes the interpretation for a single instruction, or for a
group of instructions which can be handled in the sanme way. After this
has been done, control passes back to code for checking legality of a
successful branch, or to code for <checking instruction count [|imt
excession. The next instruction is fetched, and the «cycle repeats.

Certain instructions can cause a call to an external routine. These
include all the X-macro pseudo instructions, and any SVC calls.

4. ENTRY PO NT H ERARCHY TABLE

As of 11/30/70, the interpeter consists of only one contro
section, and has no other internal nmodul es. External nodule calls are
shown by the overall hierarchy chart (Part 1.A 4.). This section is
i ncluded only for possible future use with SVC routines or special 1/0
routi nes whi ch may be added.

ASPLMA00- 5
C. OPTI ONAL EXTENDED | NTERPRETER

1. OVERVI EW

The ASSI ST Optional Extended Interpreter (EXECUT) was designed with
two inmportant ideas in mnd:

This interpreter would be nore table driven in nature than
the original interpreter. The flow of program | ogic would
center around one | arge decoding table. This table although
enl arging and sl owi ng dowmn the interpreter slightly, would
make program |l ogic easier to foll ow and update.

The Optional Interpreter would support nore s/360 -S/ 370
instructions as well as a new pseudo instruction, XOPC.

Overal |l program speed and program size were consi dered secondary in this
desi gn.

MACRO USAGE:
$SAVE - Used to save registers.
$RETURN - Used to restore registers.
$SPI E - Catch execution tinme interrupts.
El XTAB - Create a secondary displacenment table entry.
El TAB - Create a main table entry.
DSECT USAGE:
ECONTROL - Main interpreter interface with ASSI ST system
ECSTACKD - Structure of instructions executed stack.

ECBRSTAK - Structure of stack of branch instructions.

ASPLMA0O0- 6
2. DECODI NG TABLES.

The logic of EXECUT (new extended) centers around two tables
El OPCDTB and EI CONTAB. The first table, EIOPCDIB, is a 256 byte
secondary control table ordered according to opcodes. Each byte of the
table contains an index into the main control table EI CONTAB. Byt es
of the secondary control table corresponding to invalid opcodes contain
entries pointing to special EICONTAB entries in the top of the main
t abl e. This allows for easy checking of operation excepti ons.

The main contol table, EICONTAB, contains entries for every
i nstruction (grouped or singularly) which are used in the decoding of
each individual interpreted instruction. Each main table entry is 8
bytes in length. The first byte contains m scellaneous decoding fl ags;
which machines the instruction is allowed to run on, does t he
i nstruction have an extended opcode, is the instruction a privileged
i nstruction? The second byte of each table entry contains the | ength of
the given instruction and is used in updating the ASSI ST PSW The third
byte of each table entry contains flags telling about the kind of
storage checking to be perfornmed on the first and second operands of the
instruction. The fourth byte of each table entry describes the type of
storage alignment needed by the given instruction. The fifth byte of
each table entry describes the type of register specification needed
by the instruction (even or odd). The sixth table byte is a flag
telling where in the instruction the length of storage being
nodified is located. Bytes 7 and 8 of the table represent a halfword
di spl acement past program | abel EI SPEJMP. This displacenment is used in
branching to the special routine which actually interprets each
i nstruction.

These two tables are located at the bottom of the interpreter.
The secondary control table (EIOPCDTIB) is created using repeated calls
to the EI XTAB nacro. The main control table (EI CONTAB) is created using
repeated calls to the ElI TAB nacro

ASPLMA0O- 7

3. OVERALL PROGRAM LCGE C FLOW

Execut is called from the main control program (ASSIST). At
entry to Execut, register 10 has the address of the ECONTROL bl ock.
Two base registers are used, R13 first then RI12. Initialization of

the instruction stacks is performed along wth other initialization
of the fake user registers and sone work areas.

After initialization, decoding and interpretation of the first
i nstruction begins. Each instruction is interpreted in the sane
manner, as follows: The instruction is inserted into the instruction
stack and the ASSI ST instruction counter is decrenented checking for
atinmer run out. The opcode of the instruction is wused as an index

into the secondary control table (EI OPCDITB). The one byte value
inthis table is multiplied by 8 and is wused as an index into the
mai n table (El CONTAB). The nmain table entry for the instruction

being interpreted is noved into an 8 byte work area (EICINTRY). The
decodi ng of the instruction entails checking which flag bits of the
table entry are active. Several internal subroutines are executed
to do checking not perfornmed in the nmain decoding | oop. The names
of these and a short description foll ow

El CHKST - Used when a privileged operation is found to check
if the interpreter is in the Supervisor State
EITRIC - Used to provide the instruction trace (if enabled)

and count instructions for the Instruction

Execution Count Facility (if enabl ed)
El BASDSP - Used to cal culate an address fromthe base-di spl acenent
found in the instruction
Used to check fetch and store addresses to see if
they are in the program area

El MSFCHK

Fol | owi ng the common decoding process bytes 7 and 8 of the
main table entry for a given instruction are l|oaded into a register
(R1). A branch on this displacenment passed program |abel EI SPEJMP
is made to execute the special routine associated with each instruction.

The instructions were grouped where ever possible wth regard
to the special routines (i.e. 1 special routine my be used to
interpret many instructions). Register usage in EXECUT remains the

same no matter what the instruction. The opcode of the instruction
being interpreted is noved into an instruction of the same format,
where ever possible, and is actually executed. A spie is used

to catch the user interrupts possible which were not already
checked for.

After each instruction is interpreted, control is passed
back to the top of the mamin decoding loop and this entire process
i s repeated.

ASPLMB50- 1

ASSI ST MACRO PROCESSCR | NTERFACE SPECI FI CATI ONS

This section specifies the interfaces between the macro processsor
nodul es and the renai nder of the ASSI ST assenbler, also noting variables
whi ch may be of use to the macro processor, or are needed for various

conmuni cations. The following itenms are given: MODULES, SET VARl ABLES,
VARI ABLES, PARAMETERS.

R I R R I R I R R R INDEX TO THI S SEC‘I’I O\l R R I R I R R I I S O

MCODULES

MACI NT 1- 02
VACROL 1- 03
MEXPND 1- 09

ASPLMb50- 2
MODULES
MACI NT

MACINT is called 1 tinme by MPCONO before Pass 1 of the assenbly is
begun. Any required initialization can be perforned at this tinme.
Internal initialization should be omtted if ASSIST is not in MACRO
node, and such code should be onitted, particularly any which obtains
wor ki ng storage. The follow ng test can be used:

™ AVTAGSM AJOVACRO
Bz NO NI T skip initialiation

Even if no macro processing is done in a given run, the follow ng
initialization is REQURED, if the macro processor is generated at all

1. The fullwords AVGENLCD and AVGEN2CD shoul d be set = AVADDHI H.
This is required for checking purposes in I NCARD and UTPUT1. During
processi ng of macro expansi ons, AVGEN2CD contai ns the address of the
first byte of the last (tenporally) generated statenent bl ocks from
MEXPND, whil e AVGENLICD contains the address of the byte beyond the first
one created, so that | NCARD works backwards until AVGENLCD <= AVGEN2CD.

2. Any gl obal translate tables nodified by any macro code nust be
set to their correct values (with exception of 64 bytes of AWERCS
begi nning at AWERCS+C '). This allows for possiblity of interrupt
for tine or space during a BATCH run.

ASPLMb50- 3

MACROL
MACROL can be called under any of the follow ng circunstances:

1. When a MACRO conmand is encountered in the input source
program MACROL is called to read and process the entire nacro
definition which foll ows.

2. If ASSIST is generated with the macro library facility, MACROL
may be called to scan a macro definition which is obtained froma
macro library. MACROL's processing is essentially the sane as for 1.
This type of processing is caused by finding an *SYSLIB card.

3. When a nmacro-type command (GBLx, LCLx, ACTR, SETx, AlF, AGO
etc) is discovered in open code, MACROL may be called to scan it, and

perform desired action, which may include having a nunber of cards read
for a forward branch of an AGO or AlF.

4. |f a statement is discovered containing a SET synbol, MACROL
can be called to have it scanned and appropriately expanded.

ENTRY CONDI TI ONS
REG STERS

RA = scan pointer to first byte of OPERAND field, if any. [If no
operand is present, = @2nd bl ank beyond the opcode.

RC = @OPCODTB entry for the statenent, if any exists (i.e., for
cases 1, 2, 3, but not 4).

AVWKTABL VARI ABLES

AVREBPT @REBLK for stnt, if errors exist in it already.

AVRSBPT @ RSBLCCK for the statenent, which includes various flags
and the source statenent itself.

AVRSCPT = @RSCBLK for the statenment, if it is continued or has
sequence nunbers.

AVSOLAST = @I ast bl ank before the afterquote.

AVOULNCN = 3-byte, packed deci mal number of CURRENT st atenent,
not next statement, can be used for diagnostics.

AVPRI NT1 gives current print conditions, maybe tested to check on
al l owability of MACRO definition:

TM AVPRI NT1, AVPRSAVE
BO NOTALLOWED

ASPLMB50- 4

AVTAGSM contains various flag bits of interest to macro proc.
Flag AJOMACRO is definitely on (el se MACROL will never be called).
Flag AJOMACRG is on if Assenbler G options all owed (FUTURE USE******)
Flag AJOMACRH is on if Assenbler H options all owed (FUTURE USE******)
Flag AJOVACSL is on if user desired to obtain macros fromlibrary.

EXI T CONDI TI ONS
REG STERS
RB = return code showi ng action to be taken by MOCONL

= 0 ==> MOCON1 should call INCARD to obtain the next source
cardi mage fromhe card reader. This requires that MACROL has totally
di sposed of the current source card residing in RSBLOCK, etc. This
is normal return for 1, 2, and 3(except AlF, AGO branches).

= 4 ==> the current statenent exists in the usual record bl ock
area, is probably a generated statenent, or the statement found when
doing a forward read for open code AIF/AGD. It should essentially be
processed as though it had just been read via | NCARD, altough the
processing may differ slightly for the two cases given, i.e., the stnt
may or may not be a generated statement. This return would be a
normal return for case 3 (AlF, AGD and case 4.

= 8 ==> a statenent exists in the usual record bl ock position,
but UTPUT1 should be called imediately to store it away, i.e., it
probably has appropriate errors attached. This could occur for any
macro-type statenment found out of order (MACRO GBL, LCL, etc), or
perhaps for error nessages caused by errors in AIF/AGJ ng i n open
code. This would be an abnormal return from cases 1, 2, 3.

SUMVARY OF POSSI BLE RETURN CODES FOR THE CASES

CASE 0 4 8

1 NORVAL NO ORDER ERRCR

2 NORVAL NO ORDER ERRCR

3 NORMAL NORMAL(Al F, AGO) ORDER ERROR, OTHER ERROR
4 NO NORMAL NO

ASPLMB50- 5
GENERAL NOTES ON MACROL

MACROL shoul d al | ocate space when needed fromthe | ow end of
the dynanmic area, using $ALLOCL, so that this space may eventual ly be
overlaid with object code.

VWhen scanning a nacro definition, opcodes nmay be discovered which
are not defined. These should be added to the list of nmacro nanes, but
mar ked as not yet defined. It is expected that they will either turn
up later in the user program or else (if SYSLIB option exists), be
probably found in the library.

When a macro prototype is scanned, the nanme of the macro m ght
already be in the macro table, so that a new bl ock shoul d not be
gotten for the nacro, but he existing one used instead. Double defn
of a macro occurs only when a prototype is found, and it is already
actual ly defined, not just present in the table.

ASPLMb50- 6
I NDI VI DUAL CASES FOR CALLI NG MACRCL
1. MACRO STATEMENT FOUND | N | NPUT.

MACROL identifies the opcode as MACRO, by checking the OPCTYPE
flag in the OPCODIB passed to it. 1t should check to make sure that
MACRO is allowed at that point. |If not, it should return i mediately
noting that the statenent is out of order.

Assum ng the MACRO statenent is accepted, it should be printed
via QUTPT2, and the prototype statement obtained via | NCARD, and
scanned. Three cases exist for the name of the nacro:

a. It may not have been encountered before at all. 1In this case,
it should be added to the list of macros, marked as DEFI NED, and the
appropriate control block filled in as scanning the definition
conti nues.

b. It may have been previously defined. An error nmessage should
be issued, and rest of the nmacro scanned.

c. It may be present in the nmacro list, but NOT defined. This
woul d occur when an undefi ned opcode is encountered during a previous
macro definition, and so is added to the list, but marked undefi ned.
The control block for the macro shoul d be then marked defined, and
processi ng continued as though the name had not yet been seen.

After scanning the prototype and printing it via OUTPT2, MACROL
shoul d call I NCARD repeatedly to obtai 1the rest of the definition
al l ocating storage for control blocks as needed from dynam c-1| ow,
usi ng $ALLCCL.

Note: when calling OQUTPT2, the followi ng setup is appropriate
RB = $QUCOVW : notes that no |ocation counter, etc is needed

RSBFLAG actual statenments: do not nodify.
speci al error nessages: $RSBNPNN+$RSBMVERR

2. MACRO FROM SYSLI B

This situation is handled exactly as is a macro fromthe input
stream The only difference is that the PRINT is turned OFF by the
macro |ibrary processor, so that the macro definitions do not get
printed by OUTPT2.

ASPLMB50- 7
3. MACRO TYPE COWWAND | N OPEN CODE

MACROL is called when anything identified as a conditional
assenbly statement is found. The actions taken are as follows:
(NOTE: RSBFLAG shoul d be marked $RSBNP## for all stnts)

a. GBLx, LCLx, ACTR
Check for proper order, flag if incorrect, using ERRTAG and set
RSBFLAG wi t h $RSBNP##, so that the statenent will be nunbered, but will
not be processed except to be printed during Pass 2. Return with RB =8
so that MOCON1 will call UTPUT1 and then get next statenent.

If statenent order is acceptable, performrequired actions.
St orage maybe all ocated using $ALLOCL from dynam c-low, or if desired,
usi ng $ALLCCH from dynam c- high, with | ow being nuch preferred.

When the statenment is processed, it should be passed to OUTPT2
and printed (RB=$0OUCOW) .

b. SETX

The statenent is scanned, and the indicated action performed. If
any errors exist, they may be flagged using ERRTAG, and return shoul d
be made with RB =8, and al so, the RSBFLAG shoul d be fl agged $RSBNP##.

c. AIF, AGO

The statenent is scanned, and indicated action perforned. AlFs
which fail are treated exactly as are SETx.

AGO s and successful AlF' s cause the follow ng actions to occur:
First, UTPUT1 is called to save the current AIF/ AGD stm (whose RSBFLAG
shoul d be marked $RSBNP##). Next, INCARD is called until the desired
sequence synbol is discovered, at which point return should be made
with RB = 4, thus allowing MOCON1 to treat the current statenent as the
one just read.

NOTE: if an end-of-file is encountered by INCARD, it will
generate an END card automatically (and will do this every tinme that
it is called after an end-file occurs). Thus, MACROL may just flag
the END card with an appropri ate nmessage (ERRTAG, and return normally
(RB = 4). This nmessage may be omitted, since it m ght be obvi ous what
has occurred.

ASPLMb50- 8

4. STATEMENT W TH POSSI BLE SUBSTI TUTI ON OF SET VARI ABLE

In this case, RC (OPCODTB ptr) = 0. The statenent should be
scanned, and substitution perforned if needed. |If any is actually done
the original statenment should have its RSBFLAG mar ked $RSBNPNN, and
shoul d be passed to UTPUT1 to save it. Then it can be expanded, thus
creating a new RSBLOCK overl ayi ng the previous one, which should be
mar ked $RSBCGENR, not only to show that it is generated, but also to
stop macro-type statenments from being generated. Return is made with
RB = 4, so that the generated statenment is scanned and processed
appropriately.

ASPLMB50- 9
MEXPND

This nodule is called by MOCONL to expand macro calls, and is only
cal l ed under the follow ng circunstances:

1. An unknown opcode is encountered.

2. It is not already a generated statenent (i.e., $RSBGENR is not
al ready set on in RSBFLAG.

3. AVTAGSM is flagged with AJOVACRO.

When cal | ed, MEXPND nmay check for the opcode being a defined macro
i mredi ately, and return with RB = $ERIVOPC if it is not. [If it is set,
MOCONL flags it using ERRTAG and continues. Possible expansion is
shown by RB = 0 on return. |f desired, MEXPND may set RB = 0 al ways
and al ways show the outer |evel macro as a generated statenent.

If the call is for a defined nacro, MEXPND expands it as foll ows:

1. Workareas and stack space are allocated as desired, fromthe
dynam c-1ow area, with no restrictions on boundary alignnent of the
poi nt er AVADDLOW

2. Space is reserved for an error nmessage statenment i mediately
bel ow the current address in AVADDHIH. This may be used if nacro
expansi on causes an overfl ow

3. Initialization is done as desired for the entire macro nest
expansion. This includes initializing a variable to 0, to be used as
a counter for macro nest level, to be conpared to AVMWNEST as a limt.
This counter is incremented by 1 every tinme a macro is called, and
decrenmented for each MEND or MEXIT.

4. Processing of the outer nacro and any i nner macros begins.

MEXPND pl aces generated statements in the dynam c-high area,
with the first generated statenent at the hi ghest actual nenory address,
wor ki ng | ower as statements are generated. Wien exgenerating statenents
MEXPND does the foll ow ng:

1. Sets AVGENLICD = AVGEN2CD = AVADDHI H (@ owest used byte so far,
al ways on fullword boundary). AVGENLCD wi | | then remai n unchanged.
Macro call is scanned

2. For each statenent generated, appropriate information is placed
starting at the address (AVGEN2CD) - 1, and worki ng backwards, as
descri bed below. At the end of processing for each statenent, AVGEN2CD
shoul d contain the address of the (tenporally) last byte of infornmation
saved, i.e., the | owest address of usable information. During this
process, AVADDH H should NOT be nodified. It may also be desirable to
create a dummy first block, in order to allow for synbol table/literal
t abl e expansi on from AVADDH H downwar d, wi thout running over generated
statenents.

ASPLMB50- 10

3. ERROR HANDLING if the MACTR, MNEST, or MNEST counters are
overrrun during expansion, an appropriate nmessage shoul d be generated
and placed as a generated statenent, withe flags $RSBNPNN+$RSBMVERR
or at least $RSBNPNN, with latter case used if it is not to be counted
as an actual error.

I f storage overflow occurs, MEXPND shoul d cancel the entire nest
of genrated code, and place an appropriate nessage as a generated stnt,
so that the user will be inforned. It should also set the AVOVERFL
bit on in AVTAGS3, s that a nessage will be printed at the end of the
assenbl y.

ENTRY CONDI TI ONS

REG STERS
RA = scan pointer to first character of the opocde.

VARI ABLES

AVSOLAST is set appropriately, as limt to scanning required.

EXI T CONDI TI ONS

RB = 0 ==> 0 or nore generated statenents exist in dynam c-high
and MOCON1 shoul d call I NCARD continue calling | NCARD to obtain them

RB = nonzero value ==> error in macro call statenent which
prevents it from bei ng expanded, such as being an undefined or
i nval i d opocde, or any other reason which prevents expansion. 1In this
case, RB = error code to be supplied to ERRTAG and RA = scan pointer
to the error. MOCONL will flag the statenment i mediately, and cal
UTPUT1 to save it. Al so, the RSBFLAG shoul d be set to show
RSBNP##.

ASPLMB50- 11
FORMAT OF GENERATED STATEMENT BLOCKS

The foll owi ng describes the | ayout of generated statenents.
AVGENLCD contains the address of the first byte follow ng the |ast
byte generated for the first statenent generated, while AVGEN2CD has
the address of the first byte of the |ast statement generated, so
t hat AVGEN2CD <= AVGENICD .

Essentially, an information block for a generated statenent
consi sts (in descending order of addresses) of the fixed part of an
RSBLOCK (slightly nodified), the variable part of one (source stm),
and optionally, the error code/scan pointer sections of a REBLK, if
there are any such errors in the statenent.

The followi ng gives the |ayout of the block. The ADDRESS field
is given relative to the ORI A NAL val ue of AVGEN2CD, before the code
was gener at ed.

ADDRESS NAME(i f any) descri ption
-1 RSBSCAN reserved for future use
-2 RSBNUM = length-1 of REBLK, if exists, i.e.
wi || becone REBLN
-3 RSBFLAG flag byte for RSBLOCK (see notes bel ow)
-4 RSBLENG l ength-1 of generated statement. This
val ue + RSBSL wi ||l becone the actua

RSBLENG for the generated statenent.

-5 | ast byte of generated statenent

- 5- (RSBLENG) first byte of generated statenent

-5- (RSBLENG) - 1 | ast byte of REBLK, if exists

-5- (RSBLENG) - 1- (RSBNUM first byte of error code/scan ptr part

of REBLK. RSBNUM wi || become REBLN
NOTE: this setup assumes RSB$L = 4 (length of RSBLOCK fixed section).

NOTES ON RSBLFAG. the followi ng are possible conbinations of flags
in RSBFLAG with what they are used for:

$RSBCGENR normal generated statenments, with no | oca
(ERRTAG errors attached already. No REBLK
exi sts inthis case.

$RSBNP## a macro call, will not be further processed,
but will be nunbered. Al so COMVENTS car ds.
$RSBNPNN+$RSBVERR a special error nmessage, will not be further

processed expcet for printing, but is printed
special ly, as error nessage.

$RSBGENR+$REBX |'i ke $RSBGEBR, except sonme normel errors are
are already attached.
$RSBNP##+$REBX for any illegal statment such as illega

opcode, so that MOCON1 doesn't waste tine
| ooking it up again.

ASPLM500- 1
APPENDI X |: GENERAL CONVENTI ONS AND | NFORVATI ON
A. PROGRAM DOCUMENTATI ON

1. PHI LOSOPHY AND GENERAL DESCRI PTI ON

In general, the docunentation philosphy foll owed inside ASSIST is
to put as much docunentation as possible inside the source program
to keep it frombeing separated fromthe program and to keep it in
machi ne-readable form Conmments cards are set up in such a way that
conments of a global nature (e.g. subroutine entry/exit conventions,
dunmy section descriptions, etc.) can easily be extracted fromthe
source programand printed in summary form

ASSI ST docunentation is reasonably heavy. Approxinmately 20 % of
all source cards in the systemare coments cards. At |least 95 % of al
machi ne instructions and macro calls have coments with them Many
assenbl er instructions and conditional assenbly instructions al so have
comment s.

In addition to comments, programreadability is aided by libera
use of SPACE, EJECT, and TITLE cards to block off |ogical parts of
the program Every control section, and nost nmacros and dunmy sections
are titled.

2. | NTERNAL DOCUMENTATI ON FOR SUMVARY USE

Certain sections of the system have coments cards which are not
only useful for understanding the sections to which they bel ong, but
which may be required as part of a sunmary. These sections include
control sections, dunmy sections, entry points, internal subroutines,
and macro instruction definitions. 1In general, the npbst inportant
comments for a section imediately precede it, and are conpletely
bl ocked off by special characters, in order to nake them stand out.

The general form of sunmary docunentation is as foll ows:

**..> atype: objectnane brief statenent of purpose *
* descriptive information *
* delimter line (*'s, .'s. or +'s). *

atype gives the type of object described, and is one of the
fol l owi ng: CSECT, DSECT, ENTRY, |NSUB, or MACRO .
obj ect nane gives the nane of the section being described.

Each of the different types uses certain character conbinations
to flag the information in the block and nmake it easy to pick out the
conments cards containing inmportant infornmation of a given sort.

The differences are as foll ows:

atype first 2 characters delimter cards, nargins
CSECT *,

DSECT *,

ENTRY *, .

| NSUB *+ +

MACRO Cx *

L T B S T R T . N N . R T B R T R I T T R R

FOR ASSI

I NI TI ALI
ENTRI ES

ASPLMB80- 1

*¥--> CSECT: XREFA CROSS REFERENCE CONTRCL SECTION...................

WRI TTEN BY ALI CE FELTE, ALAN ARTZ, AND RI CH LONG
- - - SPRI NG SUMVER 1973

THIS CSECT 1S THE MAIN CONTRCL SECTI ON FOR THE CROSS REFERENCE

ST. I T HAS THREE ENTRY PO NTS WH CH W LL BE DESCRI BED LATER:

THI'S ROUTI NE CONTRCOLS ALL THE CROSS- REFERENCE FACILITY IF IT IS TO .
BE GENERATED. THE FI RST PASS THE FLAGS AND LOCATI ON COUNTER ARE

ZED-- XRINT1. SPACE | S ALLOCATED FOR THE CROSS- REFERENCE
AND NECESSARY FLAGS ARE SET FOR THE SECOND PASS- - XRI NT2.

THE *XREF CARD W LL BE SCANNED BY XRSCAN.

XRI'NT1: PASS ONE | NI TI ALI ZATI ON
CALLED FROM MPCONO.
1) INTIALI ZE THE ADDI TI ONAL LOCATI ON COUNTER,
AVXRLNCN, TO 1.
2) INITIALI ZE THE COUNTER, AVXRCNT, FOR THE NUMBER OF
REFERENCES TO 0.
XRINT2: PASS TWO | NI TI ALl ZATI ON
CALLED FROM MICON2.
1) ALLOCATE SPACE USI NG THE MACRO $ALLCCH TO THE
DSECT, XREFTAB, SIZE * THE NUMBER OF REFERENCES
TO BE COLLECTED AND I NI TI ALI ZE ALL SPACE TO 0.
2) SET AVXRLAVS TO FI RST FREE NODE.
3) SET HEADER NODE FOR THE TREE STRUCTRUE EQUAL TO O.
XRSCAN: CARD SCANNI NG ROUTI NE.
A FLAG | S PASSED IN A REA STER TO DETERM NE WH CH
PASS | S BEI NG PROCESSED. FCOR THE FI RST PASS, SCAN THE
CARD AND SET THE SD FLAG ACCORDI NGLY. FOR THE SECOND
PASS, SCAN THE CARD AND SET THE SR FLAG ACCCORDI NGLY.
*--> ENTRY: XRI NT1 PASS ONE INITIALIZATION. o

THIS | S CALLED FROM MPCONO ONLY ONCE
MODULE DESCRI PTI ON- -

[NI TI ALI ZES AVXRLNCT, THE ADDI TI ONAL LI NE COUNTER, TO 1

AND AVXRCNT, COUNTER FOR THE NUMBER OF REFERENCES FCUND, TO O.

ASPLMB80- 2
**__> ENTRY: XRI NT2 PASS TWO INITIALI ZATION. . ot
* TH'S |'S CALLED FROM MPCONO ONLY ONCE.
* MODULE DESCRI PTI ON- - :
., ALLOCATES A BLOCK OF SPACE USI NG $ALLOCH WHERE THE S| ZE .
., IS AVXRONT * XRSI ZE. | T SET AVXRLAVS TO THE ADDRESS OF THE
* BEG NNI NG OF THE BLOCK OR FI RST FREE NODE AS RETURNED BY
* $ALLOCH. | T ALSO SETS AVXRHEAD, THE HEADER POl NTI NG TO THE
* FIRST ENTRY I N THE TREE, EQUAL TO 0.
*
*

*--> ENTRY: XRSCAN CARD SCANNING ROUTINE.
THIS | S CALLED FROM MOCON1 AND MICON2 TO SCANN THE * XREF CARD.

ENTRY CONDI TIONS-- RA @ TO BEGA N *XREF PARM SCAN
RD | DX TO SET FLAGS(0=PASS 1, 8=PASS 2)

*
*
*
*
*
*
* MODULE DESCRI PTI ON- -

*. CHECK TO SEE WHICH PASS IT IS IN. DEPENDI NG ON WHI CH
*. PASS IT IS, THE *XREF CARD IS SCANNED AND THE FLAGS SET.

* IF 1T 1S PASS ONE, THE CARD IS SCANNED FOR SD=. IF IT
* NOT' THERE, AVXRFLAG IS NOT CHANGED. IF IT IS, CHECK FOR

* LEGAL VALUES OF *, 0, OR 1. IF IT IS NONE OF THESE THREE,
* THE STATEMENT IS FLAGGED WTH A SYNTAX ERROR. IF IT IS A

* LEGAL VALUE, THE AVXRFLAG | S SET ACCORDI NGY.

* IF 1T 1S PASS TWO, THE CARD IS SCANNED SR= AND | S

* PROCESSED SI M LARLY TO SD= ABOVE.

*

*

ASPLMb80- 3
*--> CSECT: XRCOLL COLLECTION ROUTINE. . ..o
THIS | S CALLED BY SYFIND AFTER I T IS FOUND THAT THE SYMBOL
I'S DEFI NED AND THE REFERENCE IS TO BE COLLECTED.

ENTRY CONDI TIONS-- RA HAS THE ADDRESS OF THE SYMBOL | N THE
SYMBOL TABLE.

MODULE DESCRI PTI ON- -
AVXRHEAD HAS THE ADDRESS OF THE FI RST NCDE I N THE TREE. .
AVXRLAVS HAS THE ADDRESS OF THE FI RST AVAI LABEL FREE NODE .

THE FOLLOW NG ALGORI THM | S FROM "THE ART OF COMPUTER .
PROGRAMM NG' VOL. 1 ' FUNDAMENTAL ALGORI THVMS' BY DONALD KNUTH.

CHECK HEADER ' AVXRHEAD FOR EMPTY TREE(= 0). |F EMPTY,
EXECUTE | NSUB ' XRCLAVS TO CGET FREE NODE FOR PROCESSI NG
" XRCLAVS' | NSERTS SYMBOL AND | NI TI ALI ZES LI NKS | N NODES- - - .
LEFT LI NK=0, R GHT KINK=-1 (ODD DI SPLACEMENT | MPCSSI BLE, NEGA-.
TIVE TO SI MPLI FY CHECKS | N XRPRNT ROUTINE). | F NOT EMPTY, .
DETERM NE WHETHER OR NOT A NODE HAS ALREADY BEEN CREATED FCR .
THE PRESENT SYMBOL BY COVPARI NG THE ADDRESS OF THE SYMBOL
IN REG RA TO THE ADDRESSES OF SYMBOLS ALREADY I N THE TREE
NODES. | F EQUAL, PROCESS THE REFERENCE (DESCRI BED LATER).
OTHERW SE, COMPARE ACTUAL SYMBOLS TO DETERM NE WHERE | N THE
TREE THE NEWLY CREATED NODE SHOULD BE | NSERTED. [|F THE NEW
SYMBOL IS SMALLER IN VALUE THAN THAT OF A NODE I N TREE, THE
COVPARI SON CONTI NUES WTH I T'S LEFT SUBTREE. [|F LARGER, COM.
PARI SON CONTI NUES W TH RI GHT SUBTREE. WHEN A ZERO LEFT LINK .
'S FOUND, OR NEGATIVE RIGHT LINK, THE LINK IS CHANGED TO
PO NT TO THE NODE WHI CH WLL CONTAIN THE | NFO FOR THE NEW
SYMBOL(NODE FETCHED AND | NI TI ALI ZED BY ' XRCLAVS' .

PROCESSI NG THE REFERENCES:

ONCE THE SYMBOL | S PLACED I N THE TREE, THE REFERENCE
MUST BE ENTERED I N A BLOCK OF REFERENCES. THIS IS DONE I N
THE FOLLOW NG MANNER:

1) | F THE PTR TO THE BLOCK OF REFERENCES IS NULL
(I.E. FIRST REFERENCE), A BLOCK MJST BE
ALLOCATED AND THE ADDRESS PLACED I N THE PO NTER
OF THE XREFTAB.

2) IF 1T 1S NOT NULL, THE PO NTER | S AN ADDRESS AND
THE BLOCK CAN BE LOCATED.

3) THE FIRST FULLWORD OF THE REFERENCE- BLOCK

CONTAI NS El THER:

A) THE NUMBER OF SLOTS LEFT I N THE BLOCK.
THE REFERENCE MAY BE ENTERED I N THE BLOCK, THE
NUMBER OF SLOTS | S DECREMENTED BY 1.

B) NEGATI VE ADDRESS OF AN ADDI Tl ONAL BLOCK

C) ZERO, MEANI NG A NEW BLOCK MJUST BE ALLOCATED.
ALLCCATE A NEW BLOCK AND SET THE PO NTER I N
PRECEDI NG BLOCK TO | T (NEGATI VE ADDRESS). THEN
A) MAY BE FOLLOWVED.

L S I .

L R S T S R

* k%
RO=
RWE
RX=
RA=
RB=

RC, RD, RE, RY, RZ WORK REG STERS
R14= | NTERNAL LI NKAGE
R15=

* * % % * *x * * *x * *x * *x *x * *x * *x * *x * * *x * *x * *x * * *x * *x * *x

e

ASPLMB8O- 4
REG STER USAE' XRCO_L *x * * * % *x *x * * * *x * * * *x *x * * *
X' O000FFFF' USED TO I NI TI ALI ZE NODE LI NKS
@ NCDE | N XREF LI ST BEI NG CHECKED (@ XREFTAB)
@ SYMSECT OF SYMBOL ALREADY | N XREF TABLE
@ SYMSECT OF SYMBOL TO BE CHECKED | N XREFTAB
@ BEG N OF XREF TABLE (FROM WHI CH OFFSETS COVMPUTED)

BASE REQ STER

L S S I .

| NSUB: XRCLAVS .

GET THE FI RST FREE NODE FROM THE LI ST OF AVAI LABLE
SPACE, AVXRLAVS. SETS AVXRLAVS TO PO NT TO THE NEW FI RST .
FREE NCDE. STORES THE ADDRESS OF THE SUMBCL'S SYMSECT ENTRY .
I N THE NEW NODE.

RW HAS THE ADDRESS OF THE NEW NCDE

RX HAS ADDRESS OF COLD NCDE

LEFT LINK I NI TIALI ZED TO ZERG, RIGHT LINK TO -1

NOTE: IT IS POSSI BLE TO HAVE THREAD OF A NCDE PO NT BACK TO .
ROOT NCDE WHI CH HAS | NDEX DI SPLACEMENT OF ZERO. SINCE -0 IS .
NOT DI STI NGUI SHABLE FROM +0, THE END OF THE TREE | S DENOTED
BY -1 VICE O

*--> CSECT: XRPRNT PRINT ROUTINE. e

CALLED FROM MPCONO TO PRI NT QUT THE CROSS REFERENCE.

THE COVPRESS BI T OF AVXRFLAG IS TESTED BY AVXRCOWP TO
DETERM NE VWHI CH FORMVAT TO USE FOR PRINTING IF IT IS CFF, .
EACH REFERENCE SYMBOL |S PRINTED ON A NEWLINE. ITF IT IS ON, .
THE REFERENCED LABELS ARE PRI NTED MORE THAN ONE PER LINE I F
THERE |'S ROOM

THE FOLLOW NG ALGORI THM | S FROM " THE ART OF COVPUTER .
PROGRAMM NG' VOL. 1 ' FUNDAMENTAL ALGORI THVS' BY DONALD KNUTH.

THE TREE |I'S THEN TRAVERSED | N POSTORDER

GET THE ADDRESS OF THE FI RST NODE IN THE TREE FROM

AVXRHEAD. IF IT IS 0, PRINT A MESSACE THAT NO SYMBOLS

HAVE BEEN REFERENCED. IF IT IS NOT 0, FOLLOW THE LEFT

LINKS UNTIL IT IS 0. THEN PRINT THE SYMBOL FROM THE

NODE AND ALL I TS REFERENCES. NOTE: A NEGATI VE

REFERENCE IS A MODI FY AND A POSI TI VE REFERENCE | S A .

FETCH. I T IS PRINTED ACCORDI NG TO THE FORMAT DESCRI BED .

ABOVE. .

THEN THE RIGAT LINK IS CHECKED. [IF IT IS -1, WVE ARE .

AT THE END OF THE TREE AND RETURN TO ASSI ST.

IF 1T IS LESS THAN -1,1T IS A THREAD BACK TO A NCDE.

GET THE POSI TI VE ADDRESS OF THE NODE, PRI NT THE SYMBOL

AND | TS REFERENCES. CHECK THE RI GHT LI NK AGAI N.

IFIT IS POSITIVE, IT 1S THE ADDRESS OF THE NEXT NODE.

GO TO THAT NODE AND CHECK I TS LEFT LI NK AS ABOVE.

L A R B

ASPLMb80- 5
* * % REG STER USAE' xRPRN’r *x * * % % *x *x * % *x *x * * * *x *x * * *
RW @ CURRENT XREFTAB ENTRY PROCESSED
RO= LAST @ TO START STMI # (COVPRESSED QOUTPUT)
R2= -1 DENOTES END OF TREE
RA= LAST @ TO START A SYMBOL (COWPRESSED OUTPUT)
RB= @ XREFBLK BEI NG PROCESSED
RC, RD,RZ WORK REG STERS
RE= @ OF 1ST ELEMENT (BASE FROM WHI CH CFFSETS G VEN)

* * % % * *x * * *x % *x * *x *x * *x * *x * *x *x * *x * *x * *x * * *x * *x * *x

L R S I

.--> I NSUB: XRPRLI NE PRI NTS A LI
SETS RZ TO PO NT TO THE BEG NN
OQUTPUT LI NE TO ALL BLANKS.

REFERENCES .

NE OF Co
| NG OF THE LI NE. CLEAR

.--> I NSUB: XRPNUMSL .
GETS I NDEX TO 1ST REFERENCE OF BLOCK, | NDEX TO LAST REFERENCE.
TO PRI NT, AND VALUE FROM XRBLKNUM TO USE AS FLAG FOR TEST FOR.
ADDI TI ONAL BLOCKS LATER IN MAI N SECTI ON OF CODE.
RX= | NDEX TO 1ST REFERENCE TO BE PRI NTED
RD= | NDEX TO LAST REFERENCE TO BE PRI NTED
RY= FLAG USED LATER(IF - THERE IS AN ADDI TI ONAL BLOCK)

ASPLM500- 2

a. CSECT

Each of the different types of blocks may contain certain specific
kinds of information, in addition to general descriptive text. These
are also coded in specific ways to facilitate future production of
lists and indices. The individual types are described as follows:

The information in a CSECT bl ock generally describes overal
properties of the control section. In sone cases, the text may be
very short, if the control section has a |arge nunber of entry points
with a fair anount of comments. |If all of the entry points of a csect
call the sanme subroutines, use the same set of dummy sections, or use
the sane set of macros, these will be noted in the block for the csect.
If the csect is itself an entry point, the block may contain any of the
i nformation described bel ow under ENTRY.

b. DSECT
In addition to descriptive text, a DSECT bl ock may contai n any of
the followi ng types of comments cards:

*, LOCATI ON: where in the programthe data described by the
dsect resides, such as in a specific table of a csect.

*, NANES: notes the first 2-3 characters which begin al
nanes bel onging to the dsect.

*, GENERATION: if this dunmy section describes a data bl ock
which is generated (all or in part) by a specific nacro, the macro
nane(s) used are noted here.

c. ENTRY

In addition to descriptive informati on giving the purpose of the
subroutine and possibly when it is called, any or all of the follow ng
may appear if appropriate:

*, ENTRY CONDI Tl ONS .

Following this statenent is a list of the entry conditions for the
entry point, usually consisting of a list of the parameter registers for
the entry point and their usage

*, EXI T CONDI TI ONS
This statenent precedes a list of the exit conditions for the
entry, which is normally a list of parameter registers and their usage.

*, CALLS list of entry point nanes, separated by commas. .
A CALLS statenent gives an al phabetical list of all entry points

which may be called by this subroutine (when entered formthe entry

poi nt associated with the block), with the exception of the special

subrouti nes which can only be called by macro expansi ons and thus do

not necessarily foll ow nornmal |inkage conventions. These include

t he input/output and debuggi ng nodul es (XXXXREAD, XXXXSNAP, etc).

One or nore CALLS statenents nmay be needed to conplete the |ist.

*, USES DSECTS: list of dunmmy sections referenced inside the
section of code, in al phabetical order.

*, USES MACROS: list of highest-level macros used by the
section of code, in al phabetical order.

*, NANES: description of any additonal restrictions on
the I abels used in this section of code

ASPLM500- 3

d. INSUB (I Nternal SUBroutine)

I nternal subroutine comrents normally include a brief explanation
of the section's purpose, followed by ENTRY CONDI TIONS and EXI T
CONDI TIONS, specified simlar to those of an ENTRY.

Note, as of 9/1/70, many internal subroutines do not conpletely
follow the standard format, using '+ signs as deliniters, since this
was only started recently.

e. MACRO
Macr o docunentation includes a brief statement of the purpose and
usage of the macro, with a list of the nacro paraneters. |If the nacro

uses other macros, the followi ng is included:

L x USES MACROS: list of all nmacros directly call ed. *

B. REG STER AND SUBROUTI NE LI NKAGE CONVENTI ONS

1. REGQ STER EQUATE SYMBCOLS
In order to facilitiate debuggi ng and conprehensibility of the
program symnbolic registers are al ways used inside ASSIST. A nunber of
different sets of register equate synbols are provided, and they are
as follows:

a. ABSOLUTE REGQ STER EQUATES

The standard set of equates of RO-R15 for general purpose
regi sters 0-15, and the set of equates FO-F6 for the floating point
registers 0-6 are included, and these synbols are used whenever nore
synbol i c equates are not approriate. For instance, these are al ways
used for registers 0, 1, and 2, since they have special properties.

b. SYMBOLI C REA STER EQUATES (MAINLY FOR THE ASSEMBLER)

The followi ng set of equates is provided mainly for use inside the
ASSI ST assenbl er, but they may al so be used by other parts of the
system whi ch conmuni cate with the assenbl er:

RwW EQU R3 GENERAL WORK REG STER 1
RX EQU R4 GENERAL WORK REG STER 2
RY EQU R6 GENERAL WORK REG STER 3
Rz EQU R6 GENERAL WORK REG STER 4
RA EQU R7 PARAMETER REGQ STER 1

This register is comonly used as a scan pointer register
i nsi de the assenbl er.

RB EQU RS PARAMETER REG STER 2
This register is comonly used to pass a control value to
a subroutine, and on return, alnpbst always contains either
an error code, or a zero to show no errors.

RC EQU R9 PARAMETER REG STER 3
This register is nost often used in the assenbl er for passing
a 24-bit value (such as the result of an expression or a
self-defining ternj.

RD EQU RI10 PARAMETER REG STER 4

RE EQU R11 PARAMETER REG STER 5
Regi sters RD and RE may be used for subroutines needing nore
than two or three arguments, but are nore comonly used as
work temporary work registers.

ASPLM500- 4

RAT EQU R12 ASSEMBLER TABLE PO NTER- READ ONLY
This register points the main assenbler table (VWTABL csect,
AVWKTABL dsect) during an assenbly. No subroutine in the
assenbler may nodify this register.

RSA EQU R13 SAVE AREA PO NTER/ BASE REG FOR SOVE
This register is used to point to an OS/ 360 save area, for
any subroutine which may call another. Alnmpst all subroutines
use this as a base register if they are not | owest-Ieve
routines.

RET EQU R4 RETURN ADDRESS USED | N CALLS
This is used in subroutine |inkage for the return address to
a calling program This synmbol is generally used whenever
subroutine linkage is being set up, while R14 is used when the
register is being used as a tenporary work register.

REP EQU R15 ENTRY PO NT ADDRESS/ OFTEN USED BASE
This register is used to hold the entry point address for all
subroutines in the assenmbler. Lowest-level routines usually
use this as a base register. |In other routines, this may be
used as a local work register, in which case the synbol R15
is normal |y coded.

c. OTHER REG STER EQUATE SYMBCOLS

In addition to the two main sets of equates nentioned above, the
ASSI ST interpreter EXECUT has a | ocal set of equates, and severa
routines of the assenbler have a few register equates also. These
sets are not currently used outside the control sections to which they
bel ong.

2. LI NKAGE CONVENTI ONS - THE ASSEMBLER

The |inkage conventions inside the ASSI ST assenbl er consi st of
a few nodifications to the standard OS/ 360 |inkage conventions, which
have been changed nmainly to save tinme and space. The differences are
as follows:

a. Registers RO-R6 (or RO-R2, RMRZ) are protected across any
cal ling sequence and nust be restored if changed. R14 (RET) nust also
be restored i f changed before returning

b. Regi ster R12(RAT) may not be changed by any routine.

c. Registers R7-R11 (RA-RE) are used for paraneters and tenporary
work registers, and are not protected at all across calls. No routine
ever requires nore than five argunents, so these five registers are
sufficient.

d. Except for the above, all normal OS/ 360 conventions are foll owed
regardi ng save area |inkage requirenents and usage. |In general, nost
routine only save as many registers as required. Lowest-Ilevel routines
use R15 as a base, and do not perfrom save area |inkage, other routines
usual |y use R13 as a base and save area pointer. Many of the | owest-
| evel routines save no nore than one or two registers.

ASPLM500- 5
C. NAM NG CONVENTI ONS
1. CONTROL SECTI ONS

Al labels in a control section begin with the first two characters
of the control section nane. The single exception to this rule is the
csect VWAKTABL, which contains names beginning with V, W and X

Al'l normal csect and entry point names are six characters | ong,
except for those in the intrinsic routines which are only callable by
macr o expansions. These are all eight characters Iong, and begin wth
the characters ' XXXX' (such as XXXXSNAP, XXXXI OCO, etc).

In the assenbler portion of ASSIST, entry points used only in the
first or second assenbly pass end either with a 1 or 2, respectively.

2. DuMwy SECTI ONS

Al labels in a dumy section begin with the first two-three
characters of the dunmy section nane. Dunmy sections used only inside
one control section normally use the first two characters of its nane,
followed by a third character to distinguish the dunmy section. The
single exception to this rule is the dsect AVWXKTABL, which contains
symbol s begi nning with AV, AW and AX.

3. MACRCS

In general, macro nanmes beginning with the character $ are gl oba
macros, and are liable to be used in nore than one control section. A
macro used only in one control section begins with the first two
characters of the control section name. |In addition, all the X-macros
(XSNAP, XSAVE, XIDENT, etc) are al so global nacros, and do not follow
t he above conventions because they already existed before ASSI ST was
witten.

Any nmacro which calls an intrinsic routine ends with the sane four
characters as the entry point which it calls (such as XSNAP- XXXXSNAP
$READ- XXXXREAD, XDEC! - XXXXDECI, etc).

4. SET SYMBOLS

Set synmbols used in ASSI ST are of two kinds: the first are directly
given values to indicate the options desired for an ASSI ST generation.
Their names all begin '&'. The second kind are for internal usage,
and may be indirectly set fromvalues given by the first type. There
are no restrictions on the nanes of these synbols.

5. REG STERS

Regi ster equate synbols normally begin with 'R, but a few routines
have sone | ocal equates, which begin with the first two characters of
the control section in which they are used

6. M SCELLANEQOUS | NFORMATI ON
In general, symbols beginning with '$ are of a global nature. In

addi tion, no synbols contain the characters '@ or '# , which are
reserved for future expansions of ASSI ST.

ASPLM600- 6
D. CODI NG CONVENTI ONS AND TYPI CAL TECHNI QUES
1. SYMBCLI C CODI NG

Synbolic progranming is used heavily in ASSI ST. Register equates
are always used, and equate synbols are provided for nost |lengths. Very
few nonsynbolic | engths are used anwhere in the code.

Since code nodi fcation is used in ASSI ST to save tine and space,
the following rules are followed to make the code readabl e:

a. Al instructions nodified during execution contain either of the
synmbols $ or $CHN in the fields modified. |f an opcode is nodified,
one of these synbols is added to the first operand fi el d.

b. Al nodified instructions are |labeled if they are nodified by
any instructions other than the ones i mmedi ately preceding or follow ng
the nodified instruction.

2. TABLE MACRCS

In order to facilitate changes in forns of |arge tables, alnost al
tabl es have entries generated nacros instructions. This is especially
useful for tables which often have new entries added (such as the PARM
field table in csect APARMS, or the opcode table in csect OPCOD1).

One table macro which is used very heavily is the $AL2 nacro,
whi ch generates a list of hal fword of fset values of |abels froma given

base | abel. Junps are then taken by selecting one of the of fset val ues,
usi ng codes which are multiples of two, then taking an indexed branch
to the base label. This technique is used instead of the nore comon

nmul ti pl e-of -four codes and branch tabl e nmethod, because it is at worse
only slightly slower, and uses only half the space.

3. NONOBVI QUS CODE

In general, the code is witten in a reasonably straightforward
fashion. However, in order to fulfill all the conflicting goals of
ASSI ST (hi gh speed, snmall space, replacibility of assenbl er nodul es,

I i nkage conventions close to OS/360 ones, and provision for future I/0O
simulators requiring | arge space), some sections of code are now
optim zed in a nonobvi ous way.

a. Some instructions are nodified during execution. As nentioned
above under SYMBOLIC CODING all nodified instructions use the synbols
$ or $CHN to make this fact clear.

b. Mdst routines save and restore only those registers required,
and sone routines have every single register allocated at some points
in their execution. The register allocation coments at the beginning
of such routines describes this however, so that free registers can
be found if needed.

c. Some routines use the know edge of the order of variables to
nove val ues around with | ess instructions, particularly LMand STM
The order dependenci es are al ways noted where the variabl es are defi ned.

d. In general, excessively optimzed or tricky code is confined
within a single control section, with its interface to remaining
sections defined in a sinple way.

ASPLM510- 1
APPENDI X || . SET VARI ABLES AND CONDI TI ONAL ASSEMBLY

In order to to make possible the creation of ASSIST prograns with
differing sets of options at a mninumcost in nenory, conditiona
assenbly is heavily used throughout the ASSI ST source program The
following lists the set variables which are used to control conditiona
assenbly and includes their types and neani ngs of their possible val ues.

VARI ABLE TYPE VALUES AND DESCRI PTI ONS

&$ACCT GBLB =0 no accounting discrimnation is possible
=1 accounting discrimnation is possible.

This option is a future use option which can be used to include
code to discrimnate between different account nunbers, thus allow ng
different classes differing programcapabilities and options.
NOTE LOCALLY WRI TTEN CODE MUST BE ADDED FOR THI S OPTI ON

&BPALI GN GBLB =0 Mbdel provides data alignment(360's)
=1 does not require alignnent(360/85&370's)

&BASMLVL GBLB =0 ASSI ST is being assenbled for a DOS system
=1 ASSI ST is being assenbled for an OS system
As of 08/20/71 (version 1.2/ Al1S1l), the DCS nodifications are being
added, but are not yet available for distribution.

&$BLEN GBLA =# set to length of buffer(in bytes)
&$BUFNO GBLA =# set to nunber of buffers(>0)

&$BLEN and &$BUFNO are required for a disk utility version of
ASSI ST. Can never be set to 0. Mist be present if &DI SKU > 0

&CMPRS GBLB =0 the CVWPRS |isting option is not provided.
=1 code is provided for the CMPRS |isting option
which allows printing two col ums of statenents per
page, reducing the assenbly listing by 50%
If it =1, code is added to csects APARMS and OUTPUT.

&COWT GBLA =0 no COWNT option is available
=# the COWNT option is available, and if coded,
or if &PACCT=1 and a gi ven account nunber is used,
will count the nunber of comments on nachine
instructions. User execution is not allowed if |ess
than # per cent have coments on them
If >0, code is added to APARMS, | AMOP1l, and QUTPUT csects.

&$DATARD GBLB =0 only 1 card reader (SYSIN) exists.
=1 2 card readers exist, user program can read
cards fromdifferent DDNAME t han assenbl er source
or object program
Thi s option adds code to XXXXI OCO

ASPLM510- 2

&$DEBUG GBLB =0 debuggi ng code is allowed to be generated in
ASSI ST nodul es.
=1 debuggi ng code is not generated inside ASSIST
This set variable interacts with other variables and nmacros to
control generation of conditional debugging code. See set variables
&DEBUG, &I D, and &TRACE, and macros $DBG and XSRTR. APPENDI X VI
gives full details on ASSI ST internal debugging aids.

&$DECK GBLB =0 no object decks can be produced.
=1 an obj ect deck can be punched (entrypoint
ACDECK in AOBJDK exi sts).
Adds code in ASSI ST, AOBJDK

&$DECSA &BLB =0 assenbl er does not include code for decinal
instruction set.
=1 assenbl er recogni zes and assenbl es deci ma
i nstructions.

&$DECSM GBLB =0 t he machi ne on which ASSIST is to run does not
have the deci mal instruction set option.
=1 the machi ne on which ASSIST is to run does
have t he deci nal option.

As of 9/15/70, ASSIST requires the decinmal instruction set. Sone
sections of code (particularly csects ASSI ST and QUTPUT) use deci nal
instructions for convenience. This set variable is provided for future
use in adding alternate code to let ASSIST run without this feature.

&$Dl SKU GBLA =0 no i nternedi ate di sk code generat ed.
=1 becones user option, DI SKU NODI SKU.
=2 al ways di sk internedi ate storage.

if >0, code is added to XXXXI OCO, and UTOPRS

&$DSKDV GBLC =Devi ce Nunber for DI SKU option, only
used when &$DI SKU=0 and DOS system
**def aul t =' 2314' **

&ERNUM GBLA = val ue of highest-nunbered error equate synbol
normally = 2 * nunber of different equate synbols.
This variable is used by macro $SERR to create equate val ues at
first, and later to generate space for a pointer table in OQUTPUT csect.

&$FLOTA

&$FLOTAX

&$FLOTE

GBLB

GBLB

GBLB

ASPLM510- 3

=0 the ASSI ST assenbl er does not include code
and tables for the floating point instructions.
=1 the ASSI ST assenbler will recognize and
assenbl e the floating point instructions.

=0 the ASSI ST assenbl er does not include code
and tables for the extended floating point
instruction set.

=1 the ASSI ST assenbler will recognize and
assenbl e extended floating point instructions.

=0 ASSI ST interpreter EXECUT will not execute
floating point instructions.

=1 ASSI ST interpreter will execute floating
poi nt instructions.

&$FLOTE is set to 0 if either &BFLOTA or &$FLOTM have that val ue,
i.e., the interpreter will not contain code to performfloating point
operations unl ess the assenbl er accepts the opcodes for them and the
has the hardware to performthem

conput er

&$FLOTEX

GBLB

=0 the ASSI ST interpreter EXECUT will not execute
ext ended floating point instructions.

=1 the ASSIST interpreter will execute extended
floating point instructions.

&$PFLOTEX is set to O if &FLOTMX has that value, i.e. the

interpreter will

not contain code to perform extended floating point

operations unless the machi ne has the hardware to performthem

&$FLOTM

GBLB

=0 machi ne on which ASSIST is to run does not have
floating point instructions set.
=1 machi ne does have floating point insructions.

The only part of the ASSI ST assenbl er using floating point
instructions is csect CDECNS (Fl oating point constant processor). This
section could be rewitten using only fixed-point operations, depending
on the value of &BFLOTM for machi nes not having floating point, but
with users wanting to use D and E constants.

&$FLOTMX

&$FREE

&$GENDAT

&$HEXI

&$HEXO

&$1 DF,
&$1 MX

GBLB

GBLA

G&BLC

GBLB

GBLB

GBLA

=0 machi ne on which ASSIST is to run does not have
ext ended floating point instruction set.

=1 machi ne does have extended fl oating point

i nstructions.

default val ue of FREE= paraneter, should be set to
t he m ni mum val ue whi ch rel eases enough space for
operating systemfor buffers and nodul es to support
what ever i/0 devices are all owed.

= date given version of ASSIST generated, in form
no/ dy/yr. Becones part of ASSIST header |ine.

=0 ASSI ST interpreter EXECUT will not execute the
XHEXI instruction.
=1 The XHEXI instruction will be executed.

=0 ASSI ST interpreter EXECUT will not execute the
XHEXO i nstruction.

= default and maxi mum possi bl e val ues of |= option
If desired ASSI ST has any kind of timer, these

val ues shoul d be set very high so that the timng
control variables are used to stop | oops instead.

ASPLM510- 4

&I OUNIT GBLC Specifies the ddnane or file nanes used for
standard 1/ 0O (not including XGET/ XPUT).

USE OS DEFAULT DOS DEFAULT
1* Primary Card | nput SYSI N(QSAM GV SYSI PT(DTFCD)
2 Secondary | nput FTO5f 001(QSAM GM) SYSRDS(DTFCD)
3* Printer FTO6F001(QSAM PL) SYSLST(DTFPR)
4 Punch FTO7FO01(@QSAM PL) SYSPCH(DTFCD)
5 Di sk I nternedi ate FTO8F001(BSAM SYS001(DTFSD)
6 Macro Library SYSLI B(BPAM N. A

7 FOR FUTURE USE

8 FOR FUTURE USE

* Denotes Required Dataset (Access Method/ DTF)

&$KP26 GBLB =0 only 029 keypunch decks can be accept ed.
=1 ASSI ST responds to the KP=26 option, and can
translate i ncom ng 026 keypunch decks correctly.

&$LDF, GBLA = default and nmaxi num possi bl e val ues of the L=

&$LMX paraneter, only neaningful if &PAGE=1. These are
normal Iy set to the maxi mum possi bl e nunber of |ines
on an actual page (usually 63).

&$MACOPC GBLB =1 Open code conditional assenbly
al l oned(i f &BMACROS=1)
=0 No open code al | owed

&SMACRCS GBLB =0 the assenbl er part of ASSIST should not contain
code for processing user-witten macro instructions.
=1 the ASSI ST assenbl er should contain code to
process user-witten macros.

&MACROG H,V GBLB NO asng, h, v
FOR FUTURE USE

&MACSI Z GBLA = address of byte 1 byte beyond maxi mum address of
the conputer. **ONLY REQUI RED | N NON- OS/ 360 systens
since ASSI ST obtains this information from OGS/ 360

CVT.
&MACSLB GBLB =1 Macro library search inplenmented
=0 No macro |ibrary search
&MCHNE GBLC Type of machi ne(for header only)
&$MODEL GBLA = nmodel nunber of S/ 360 for which the systemis

bei ng assenbl ed.
This variable is used to identify output, and is al so provided for
future use in generating code optimzed for different nodels, and for
nodi fied versions for use with S/ 370 rather than S/ 360.

&OBJIN GBLB =0 ASSI| ST cannot | oad obj ect decks.
=1 obj ect decks can be | oaded.
This option adds code to ASSI ST, and creates entry AOBJIN of csect
ACBJDK.

&OPTMS GBLA = value fromO to 9 indicating the degreee of space
versus speed optinization in the code generated for
ASSI ST. Lower values generate snaller, but slower
versi ons of ASSI ST.
This variable mainly affects sections of code in | CMOP2 and | DASM.
A snal | val ue causes the code in these sections to be generated to be
general and small, rather than special case oriented and larger. |If
&BOPTMS is less than 3, error codes only are printed, saving about 1K of
nenory devoted to error nessages in csect OUTPUT. &OPTMS is al so used
to set the value of &bSYHASH (for synbol table). Also, if &POPTMS<3,
error nmessages are not printed, just the error nunbers, and this change
saves approximately 1K by itself.

ASPLM610- 5

&$PAGE GBLB =0 no page control code exists.
=1 page control code exists, and various options
are added (CPAGE, L=, P=, PD=, PX=, SS, SSD, SSX).
Thi s option adds code to ASSI ST, XXXXI OCO.

&$PDF, GBLA = default and maxi num possi bl e val ues of P=
&$PMX option (i.e., total number of pages allowed for 1
$JOB run in a BATCH or whol e run otherw se).
Only neani ngful if &SPAGE=1

&$PDDF, GBLA = default and maxi mum possi bl e val ues for the PD=
&$PDIVX option (nunber of pages saved for user conpletion
dunmp). Only nmeani ngful if &$PAGE=1.

&$PRI VOP GBLB =0 privil eged operation codes are not accepted.
=1 privil eged operation codes are assenbl ed, and
recogni zed by the interpreter EXECUT.

This variable affects the opcode tables in OPCOD1 and a few |lines
of code in | CMOP2 devoted to analysis of the operand fornms needed only
by privileged operations.It also affects code in the interpreter EXECUT.

&PUNCH GBLB =0 no real card punch exists in ASSIST.
Attenpted punching will be sinulated.
=1 real card punch exists.
This adds code to XXXXI OCO.

&$PXDF, GBLA = default and maxi mum possi bl e val ues for the PX=
&$PXMX option (nunmber of pages allowed for user execution
plus conpletion dunp). Meaningful if &PAGE=1.

&$P370 GBLB =0 the ASSI ST interpreter EXECUT will not allow
S/ 370 privil eged operations.
=1 the ASSI ST interpreter will recognize S/ 370
privil eged operation codes.
This variable affects only code in the interpreter. |Its value is
set dependi ng upon the value of &$PRIVOP and &$S370. |If &$PRIVOP = 1
(i.e. the user wants privileged operations) and &S370 *= 0 (i.e. the
user wants sone type of S/ 370 interpretation) then &P370 is set to 1.
Else it is set to O.

&$P370A GBLB =0 the ASSI ST assenmbler will not permt
S/ 370 privil eged operation codes.
=1 the ASSI ST assenbler will recognize
and assenble S/ 370 privil eged operations.

This variable affects the opcode table in OPCOD1 and a few
lines of code in | CMOP2 needed only for S/ 370 privil eged operation
codes. It is set to 1 if the values of & PRI VOP and &$S370A
are both 1 (i.e. the user wants privil eged operation codes and al so
wants S/ 370 operation codes). Else it is set to O.

ASPLM610- 6

&$RDF, GBLA = default and maxi mum val ues of R= option (tota
&$RVX output lines and cards during 1 $JOB run).

&$RDDF, GBLA = default and maxi mum val ues of RD= option (nunber
&$RDVX of output records to be reserved to provide a user

conpl eti on dunp).

&$RECORD GBLA =0 or 1 record limt handling is done using the
val ues of R=, RD=, and RX= options only.
=2 record Iimt processing may involve the use of
the $TIRC macro (RECREM operand). This option
should only be used if there is a way to obtain the
actual nunber of records remaining for a job during
execution. The $TIRC macro may have to be nodified
to acconplish this at a particular installation.

This variable affects only csect ASSI ST.

&RELOC GBLB =0 assenbler will not contain code to relocate
a programto actual location in nenory.
=1 assenbler will contain code to relocate user
programto the area in nenory where it actually is.
The program can be run with store-only protection.
This option is required to =1 if &REPL>0, since the Replace
Moni t or cannot handl e prograns unl ess they are rel ocat ed.
The only csect affected is UTOPRS. Code is added to test for the
repl ace option being used, in which case flags are set to sinulate the
exi stence of a START card with the address in nenory where the user
programw || be | oaded, which permts relocation to be done with no
ot her extra code in ASSIST.

&$REPL GBLB =0 ASSI ST wi Il not contain code for the repl ace
process.
=1 ASSI ST wi Il recognize the REPL option,
and will contain the code (csects REMONI, RFSYMS,
and nodifications to ASSI ST csect) to
perform dynam c repl acenent of control sections in
t he ASSI ST assenbler. See PART IV of this manual.
This option allows nodule to be replaced as | ong as
t hey need not call other nodul es.
=2 as for =1, except that the extra code is added
to permt a replacenent programto nake calls to
exi sting ASSI ST assenbl er nodul es.

ASPLM610- 7

&$RXDF, GBLA = default and maxi mum val ues of RX= option (tota

&BRXIMX out put records allowed for user execution plus dunp
t oget her) .

&$SPECI O GBLB =0 no special |/O operations are recognized.

=1 special |/O operations are recogni zed by the
assenbl er (opcode type = $I9)

As of 9/15/70, this is a future use option for including code to
simulate 1/O operations in core, using QSAMtype comrands. At this
time, the assenbler part of this code does not exist, although sone of
the code for scanning JCL and building control tables does. See thesis
paper of Harry McQuire, PSU

&$SYHASH GBLA = nunber of fullwords in the initial pointer
tabl e used by synbol table handl er SYMOPS csect, and
all ocated in the high end of the dynam c workarea

This value varies from8 to 64, and is set depending on the val ue
of &BPOPTMS, dependi ng on space requirenents. See begi nning of csect

SYMOPS for details on how this value is set.

&$SYSTEM GBLC = operating system being used. This value is noted
on the printed output fromASSIST. It is also used
to set the value of &ASM.VL, dependi ng on whet her
the first two characters of &SYSTEM are 'COS' or
not .

As of 9/15/70, this should have one of the values: OS-PCP, OS-MT,
or OS-MWT, or DOS

&$S370 GBLA =0 the ASSI ST interpreter EXECUT will not execute
I BM S/ 370 instructions.
=1 the ASSIST interpreter will interpret S/ 370

i nstructions nmaking free use of the S/ 370
instruction set.

=2 the ASSIST interpreter will interpret S/ 370

i nstructions using only standard S/ 360 instructions.

&$S370A GBLB =0 the ASSI ST assenbler will not include code
for the S/ 370 instruction set.
=1 the ASSI ST assenbler will recognize and
assenbl e standard S/ 370 instructions.

&$TDF, @GBLC = default and maxi mum possi bl e val ues whi ch can

&$TMX be used as the T= option (i.e. total time for 1
$JOB .) Specified to mllisec. if desired.
Effective only if &$TI MER>O.

&$TDDF, @GBLC = default and maxi num possi bl e val ues of TD=

&$TDIVX option (time in seconds saved for execution dunp).
Can be specified to mllisecond accuracy, and is
meani ngful only if &$TI MER>O.

&TIMER GBLA =0 no timing is done at all.
=1 timng is done using only the |IBM STI MER and
TTI MER macr os.
=2 timng is done using a local macro to find at
execution tine the remaining time left for a job.
This option affects code in APARMS, ASSI ST, and EXECUT.
It al so enabl es use of T=, TD=, and TX= option val ues.

ASPLM510- 8

&$TXDF, @GBLC = default and maxi num val ues of TX= option, (i.e.

&P TXMX tinme for user program execution+dunp together).
Effective only if &$TIMER>0, and can be specified to
mllisecond accuracy if desired.

&BVERSLY GBLC = version and | evel of ASSIST bei ng generated.
This value is printed by ASSIST to identify itself and aid in
detection of errors...as of 2/1/73, this has the value '2. 1/ A" .

&$XI OS GBLB =0 the x-macro pseudo instructions are not
assenbl ed by the ASSI ST assenbl er.
=1 the x-nmacro instructions are assenbl ed and
i nterpreted.

This value affects the follow ng instructions: XDECI, XDECO, XDUWP,
XHEXI, XHEXO, XLINMD, XPNCH, XPRNT, XREAD, which are all handled as in-
structions by ASSI ST, and are nmacro instrcuctions under OGS/ 360 assenbl er
As of 9/15/70, this value should be 1, since there is no other way to
performinput/output at this tine. This value affects the opcode table
in the csect OPCODL, scanning code in | CMOP2, and execution code in
EXECUT.

&$XXI CS GBLB =1 XGET/ XPUT are not all owed
=0 XGET/ XPUT al | owed

&X$DDMOR GBLB =1 standard ddnanes only
=0 al l ow user's own ddnanes
only if &BXXl CS=0
certain nanmes |listed in XDDTABLE

&DEBUG @GBLC = hexadeci mal val ue used by XSRTR macro for flag
testing. See nmacros $DBG and XSRTR, and APPENDI X
VI for full explantion

& D @GBLC = value to be used for identification at an entry
point in a control section. Has value '*', in which
case all entry points have identifications, or value
"NO, in which case none of themdo. This is set

dependi ng on val ue of &$DEBUG See macro $SAVE and
APPENDI X VI for expanations.

&TRACE GBLC = control value for snaps generated by $SAVE and
$RETURN macros at entry and exit points.

NO no trace code is generated at al
* a trace nmessage is printed
SNAP GP registers are printed, with nessage

See al so Appendix VI for a full explanation of usage.

APPENDI X |11

AJOBCON
AOBJCARD
APCBLK
AVWKTABL
CNCBLOCK
CONBLK
ECONTROL
ECSTACKD
ERCOVPCD
EVCTDSCT
| CBLOCK

| HADCB
LTBASETB
LTLENTRY
MACLI B
MCBOPRST
MCBSTRVS
MCBSU
MCGLBDCT
MCLCLDPV
MCOPQUAD
MCPARENT
MCPAROPR
MCPARSUB
MCSEQ
MBGBL OCK
MXPNTSAV
OPCCDTB
OUCMPRSD
QUSTMTI M
RCODBLK
REBLK
RECORBLK
RFSYMBLK
RSBLOCK
RSCBLK
RSOURCE
SYMSECT
X$SLOTFO
XDECI B
XDECOB
XHEXI B
XHEXOB

XI OBLOCK
XSPI EBLK
XXSNAPC

DUMWY SECTI ONS AND TABLES

03440100
05098030
04552200
02878020
02721000
10366100
03572100
03712200
03420100
11486100
02663100
07552100
16288050
16310100
02876250
41335000
41250000
41025000
40785000
40875000
41160000
40940000
41500000
41570000
41095000
02877300
41385000
02269100
18748060
18748900
02776100
02801000
30004000
30082000
02811500
02848100
02864100
02689100
02317244
07150600
07151080
07151590
07151845
07540000
08563175
07556200

01/31/ 73 -

oo ~N~N~N~NN~N~NOOOOOOOOOOD GO oTo oo, DAEDREDMOWWWNDNDNDN

ASPLM520-

2.1/ A

1

EE R S A TR T N N N B N N N N R

ASPLM620- 2

*--> DSECT: AJOBCON MAIN JOB CONTROL TABLE.

THI' S DSECT PROVI DES THE PRI MARY COVMUNI CATI O\I TABLE USED

BY THE MAI N PROGRAM ASSI ST, THE |/ O ROUTI NES(XXXXI OCO), THE
PARM FI ELD ANALYZER (APARMS), THE MAI N PROGRAM COF THE
ASSEMBLER (MPCONO), AND THE REPLACE MONI TOR (REMONI). I T
PROVI DES FOR GLOBAL FLAG VALUES DEALI NG W TH THE OVERALL .
JOB I N PROGRESS, PARM FI ELD VALUES, USEFUL CONSTANTS, BLANKS, .
ZEROES, WORKAREAS, AND DYNAM C STORAGE AREA LIM TS.

LOCATI ON: I N TABLE ASJOBCON OF CSECT ASSI ST.

*--> DSECT: ACBJCARD | MAGE OF OBJECT DECK CARD .

THI S DSECT DESCRI BES 1 CARD OF AN ASSI ST OBJECT DECK THE .
DECK FORMAT | S COVPATI BLE W TH NORMAL S/ 360 OBJECT DECKS, SO THAT .
THEY CAN BE USED UNDER SOVE Cl RCUMSTANCES. THEY ARE HOWEVER
SI MPLER, IN ORDER TO ALLOW FOR PRODUCTI ON OF THEM FROM STUDENT-
COWPI LERS, 1.E. XPL. LATER VERSIONS OF THE LOADER MAY PERM T
MORE COWPLEX OBJECT DECKS, BUT AS OF 9/01/71, THE ONLY TYPES OF
OBJECT DECK CARDS RECOGNI ZED ARE TXT AND END CARDS.

REFERENCE: ASSEMBLER(F) PROGRAMVER S GUI DE - GC26- 3756-4

*--> DSECT: APCBLK APARMS PARM CODE BLOCK. . . .
THI' S BLOCK DESCRI BES A PARM OPTI ON TABLE, GI VI NG THE NAIVE (]: .
THE PARM A FLAG BYTE, AND AN OFFSET ADDRESS TO A PROCESSI NG .
SECTI ON OF CODE I N CSECT APARMS. I T IS USED ONLY | N APARMS.
LOCATI ON: | NSI DE TABLE APBPARVA | N CSECT APARVS.
GENERATI O\ EACH APCBLK | S CREATED BY 1 CALL TO APCGN MACRO.
NAMES: APC-- - - -

*--> DSECT: AVWKTABL MAI N CONTROL TABLE FOR THE ASSEMBLER.

THI'S DSECT | S USED BY ALMOST ALL SUBROUTI NES OF THE ASSEI\/BLER
FOR COMMUNI CATI ON, COVMON CONSTANTS, AND WORKAREAS, AND | S
ALSO USED SOVEWHAT BY THE MAI N PROGRAM ASSI ST AND THE

REPLACE MONI TOR REMONI .

LOCATI ON: CSECT VWKTABL, W TH SAME NAMES PREFI XED WTH ' A'.
NAMVES: AX------ y AW - - - - - y AV-- - - - - (DEPENDS ON SECTI ON)

THI' S DSECT CONTAI NS THE FOLLOW NG SECTI ONS:

1. ADDRESS CONSTANTS(NAMES: AX, FOLLOWED BY ENTRY NAME).
THI'S SECTI ON CONTAI NS 1 ADDRESS CONSTANT FOR EVERY CALLABLE
ENTRY PO NT I N THE ASSI ST ASSEMBLER. THESE ARE READ- ONLY,
EXCEPT DURI NG A REPLACE RUN, I N WHI CH THE ADCONS FOR A .
SI NGLE CSECT ARE TEMPCRARI LY MODI FI ED. THE LABEL AX$BASE IS .
USED AS A BASE ADDRESS FOR THE CALCULATI ON OF COFFSETS TO .
I NDI VI DUAL ADCONS, FOR THOSE ROUTI NES REQUI RI NG TABLE- DRI VEN .
CALLI NG SEQUENCES (CNDTL2, CODTL1, MPCONO, REMONI') . NOTE THAT
ALL ENTRY PO NTS HAVE 6- CHARACTER NAMES. THE MACRO $CALL
'S USED I N CONJUNCTION WTH THI S PART OF AVWKTABL.

2. CONSTANT VALUES (NAMES: AW -----)
THI'S SECTI ON CONTAI NS USEFUL CONSTANT VALUES, SUCH AS .
ZEROES, BLANKS, MASK VALUES, TRANSLATE TABLES, EDI T PATTERNS..
ALL VALUES ARE READ- ONLY, EXCEPT THAT ANY ROUTI NE MAY

ASPLM620- 3

MODI FY PART OF THIS SECTION IF IT RESTORES | T BEFORE

ALLOW NG ANOTHER SUBROUTI NE TO GAI N CONTRCL. TRANSLATE .
TABLES | NCLUDE ONES FOR SCANNI NG DECI VAL NUMBERS AND MACHI NE .
I NPUT CONVERSI ON - HEX TO BI NARY, SCANNI NG SYMBCLS AND

| NSTRUCTI ON OPERANDS, SCANNI NG HEXADECI MAL CONSTANTS, DO NG
GENERAL EXPRESSI ONS, CONVERTI NG Bl NARY TO OUPUT HEXADEC! MAL.
GENERATI ON: SECTI ON AWCONADS | S CREATED BY MACRO WCONG.

3. VARI ABLES (NAMES: AV------)
THI'S SECTI ON CONTAI NS ALL VARI ABLE AREAS USED FOR
COVMUNI CATI ON | NSI DE THE ASSI ST ASSEMBLER, | N ADDI TI ON TO
VARI OUS WORKAREAS, WH CH MAY BE OVERLAPPED TO SAVE SPACE.
THE AREAS PROVI DED | NCLUDE THE RECORD BLOCKS, LOCATI ON
COUNTER VALUES, CURRENT SECTI ON | D, CURRENT DYNAM C STORAGE
AREA LIM TS, AND VARI OUS FLAGS. TEMPORARY WORKAREAS ARE
SUPPLI ED, ALL W TH ' WORK' | NCLUDED I N THEI R NAMES, WHI CH
CAN BE USED BY ANY ROUTINE , BUT ARE NOT SAFE ACRCSS A
SUBROUTI NE CALL. NOTE THAT TH S SECTI ON REQUI RES EQU SYMBOLS.
FROM CNCBLOCK AND THE RECORD BLOCKS TO ASSEMBLE CORRECTLY.

L T S TR N T T N R N I N N

**__.> DSECT: CNCBLOCK CONSTANT CODE BLOCK-DC S, LITERALS. . . .
* LOCATI ON: EACH CNCBLOCK | S CREATED | N AREA COBLK OF CODTLL.

* 1 OR MORE CNCBLOCKS MAY BECOME PART OF THE RCODBLK CREATED

* IN AREA | BRCB BY | BASML, AND 1 CNCBLOCK BECOMVES PART OF THE
* ENTRY FOR EACH DI STI NCT LI TERAL(SEE LTLENTRY DSECT, LTOPRS
* CSECT.)
* NAMVES: CNGC-- - - -
*

**--> DSECT: CONBLK CONSTANT DESCRI PTOR CCDES BLOCK(CCDTL1) . .
*, THI'S BLOCK CONTAI NS DATA FOR A G VEN CONSTANT TYPE, AND IS
* USED BY ASSEMBLER SUBR. CODTL1 I N SCANNI NG CONSTANTS AND

* BU LDI NG CNCBLCCKS DURI NG ASSEMBLY PASS 1. THE DATA

*. G VEN | NCLUDES A FLAG BYTE, DEFAULT LENGTH- 1, LEFT AND

*, Rl GHT DELI M TER CHARACTERS REQUI RED FOR THE CONSTANT, AND

* M NI MUM AND MAXI MUM VALUES FOR THE LENGTH- 1 OF THE CONSTANT.
* THE FLAG BYTE, W TH MODI FI CATI ONS, BECOVES THE CNCTYPE BYTE
* OF THE CNCBLOCK CREATED FOR EACH CONSTANT OPERAND.

* LOCATI ON: TABLE CONTABL OF CSECT CCDTL1

* GENERATION: 1 CALL TO MACRO CONG CREATES A CONBLK ENTRY.

*

**--> DSECT: ECONTROL EXECUTI ON CONTRCL BLOCK . . .

* THI' S BLOCK CONTAI NS ALL DATA REQUI RED TO DESCRI BE A USER

* PROGRAM TO BE EXECUTED BY THE ASSI ST | NTERPRETER (EXECUT) . .
* | T CONTAI NS SI MULATED USER REG STERS AND PROGRAM STATUS WORD, .
* AN | NSTRUCTI ON STACK , PO NTERS TO THE USER PROGRAM CODE,

*. AND VARI QUS FLAGS DESCRI BI NG THE RUNNI NG MODE AND OPTI ONS .
*. ALLONED TO THE USER PROGRAM I T IS CREATED FROM | NFORMATI ON .
* FROM THE ASSEMBLER, THE USER PARM FI ELD, AND FROM THE

* OPTIONS I N ASSI ST, AND IS MODI FI ED BY EXECUT. | T ALSO

* PROVI DES ALL DATA NEEDED BY XXXXSNAP TO DO A USER DUMP.

* LOCATION: I N HI GH END OF DYNAM C CORE AREA

* NAMES: EC------

*

ASPLM620- 4

**-.-.> DSECT: ECSTACKD SINGLE ENTRY I N ECONTROL | NSTRUCTI ON STACK.

* THE ECONTROL | NSTRUCTI ON STACK | S A CI RCULAR LI NKED LI ST .
* VWHI CH ALWAYS CONTAI NS DATA ON UP TO THE LAST 10 I NSTRUCTI ONS .
*. | NTERPRETED DURI NG EXECUTION. I T IS FILLED I N BY EXECUT, AND.
*. 'S USED BY XXXXSNAP TO PROVI DE THE | NSTRUCTI ON TRACE PART

* OF A USER COVPLETI ON DUMP.

* LOCATI ON: | NSI DE AREA ECI NSTAC | N DSECT ECONTRCL.

* NAMES: EC------ (SAME AS ECONTROL NAME CHARACTERS)

*

**_.> DSECT: ERCOMPCD COWVPLETI ON CODE/ ERROR MESSAGE BLOCK . . .

* TH'S G VES FORVAT OF 1 COWPLETI ON CODE/ MESSAGE BLOCK FO?

* USE I N A USER COVPLETI ON DUMP BY SUBROUTI NE XXXXSNAP. THE .
*. ADDRESS OF THE APPROPRI ATE BLOCK |I'S PLACED | NTO WORD ECERRAD .
*. I N DSECT ECONTRCL, AND IS USED THEN BY XXXXSNAP TO PRI NT THE .
* | NFORMVATI ON | N THE ERCOVPCD BLOCK.

* LOCATI ON: | NSI DE EXECUT, W LL BE ELSEWHERE(FUTURE) .

* GENERATI ON: 1 BLOCK CREATED BY 1 CALL TO $ERCGN MACRO.

* NAMES: ERC-----

*

**.-.> DSECT: EVCTDSCT EVALUT TRANSI TI ON TABLE ENTRY

* THI'S DESCRIBES 1 ENTRY IN 1 ROW OF THE GENERAL EXPRESSI O\l

* EVALUATOR EVALUT, AND G VES A SECTI ON OFFSET @ TO USE, AND
*. El THER A NEXT STATE(ROWN | N TABLE OR AN ERROR CODE FOR AN
*, | LLEGAL CURRENT STATE/ CURRENT VALUE COMBI NATI ON.

* LOCATI ON: TABLE EVCTAB | N CSECT EVALUT.

* GENERATI ON: 1 ROW OF EVCTDSCTS |'S GENERATED BY 1 EVCG MACRO.
* NAMVES: EVCT--- -

*

**-.-.> DSECT: | CBLOCK MACHI NE | NSTRUCTI ON OBJECT CODE BLOCK. .
* THI'S DSECT | S USED TO TRANSM T DATA FROM | CMOP2 CSECT TO
*. QUTPT2 FOR PRI NTI NG MACHI NE | NSTRUCTI ONS.

*. LOCATI ON: TABLE | CYBLOCK I N CSECT | CMOP2 OF ASSEMBLER

* NAMES: | CB-----

*

*--> DSECT: | HADCB DATA CONTRCL BLOCK DSECT.
DCB DSECT USED BY PARTS OF XXXXI OCO.
GENERATI ON: DCBD MACRO

LOCATI ON: XXSODCB, XXREDCB, XXPNDCB, XXPRDCB

**-..> DSECT: LTBASETB LITERAL POCOL BASE TABLE - 1 FOR EACH POOL . .

* ONE LTBASETB | S CREATED FOR EACH LI TERAL POOL, BY LTINT1 OR

* LTDMP1. THE TOTAL # CREATED = # LTORGS + 2, WH CH | NCLUDES

* 1 FOR THE END STMI, AND 1 EXTRA 1 FOR CODE SI MPLI FI CATI ON.

*. VWHEN LTDMP1 IS CALLED, IT FILLS IN THE SECTION I D OF THE

*, SECTI ON WHERE THE POOL W LL BE ASSEMBLED, THE BEG NNI NG @ OF .
* THE POOL, AND THE OFFSET @ VALUES FROM THE BEGQ NNI NG @ TO .
* EACH LI TERAL I N THE POOL. | N ADDI TI ON TO ADDRESS AND SECTI ON.
* I D, THE LTBASETB ALSO CONTAINS THE LI ST HEADS FCR 4 LI STS

* OF LI TERAL ENTRI ES (LTLENTRY BLOCKS). USED ONLY I N LTOPRS.

* LOCATI ON: HI GH END OF DYNAM C AREA ($ALLOCH MACRO) .

* NAMES: LTB-----

ASPLM620- 5

**--> DSECT: LTLENTRY LITERAL TABLE ENTRY FOR EACH LI TERAL. .

* 1 LTLENTRY BLOCK | S CREATED BY LTENT1 FOR EACH UNI QUE

* LI TERAL IN A G VEN LI TERAL POOL. THE LTLENTRY BLOCKS ARE

* ORGANI ZED IN 4 LINKED LI STS, WTH LI ST HEADS I N THE CURRENT

* LTBASETB BLOCK. EACH LTLENTRY | NCLUDES THE OFFSET FROM THE

* BEG NNI NG OF THE CURRENT LI TERAL POOL @ (ENTERED BY LTDWP1), .
*. A COVPLETE CNCBLOCK DESCRI Bl NG THE LI TERAL CONSTANT, AND THE .
*. CONSTANT | N CHARACTER FORM LTGET2 USES THESE BLOCKS TO

* DETERM NE THE USER PROGRAM ADDRESS FOR ANY DESI RED LI TERAL,

* AND LTDMP2 USES THEM TO PRI NT LI TERAL POOL LI STI NG AND

* HAVE THE CODE ASSEMBLED FOR THE POCL. USED ONLY I N LTOPRS.

* LOCATI ON: HI GH END OF DYNAM C AREA ($ALLOCH MACRO) .

*

*

NAMES: LTL-----
**--> DSECT: MACLIB THI' S DSECT G VES THE FORVAT OF A MACRO *
* LI BRARY ENTRY. *
* *
*:***
.--> DSECT: MCBOPRST FORVAT OF OPERATOR STACK ENTRY *

* *

* *

* *x % *x * *x * % *x * *x * * * * *x * *x * * * * *x * *x * * * * *x * *x * * *

**.-.> DSECT: MCBSTRMS FORMAT OF TWO BSU S FOR EASE
*. OF MANI PULATI ON I N TERM STACK

*

* F Xk

* *x % *x * *x * % *x * *x * * * * *x * *x * * * * *x * *x * * * * *x * *x * * *x

**.-.> DSECT: MCBSU FORMAT OF BASI C SYNTACTIC UNIT

*

* X

* *x % *x * % * % *x * *x * * * * *x * *x * * * * *x * *x * * *x * *x * *x * * *x *

**.-.> DSECT: MCGLBDCT FORMAT FOR GLOBAL DI CTlI ONARY ENTRY *
* *
*:***
**--> DSECT: MCLCLDPV FORVAT FOR LOCAL DI CTlI ONARY DOPE VECTOR *
* *

k khkkkkhkkkhkhkkhhkhkhhkhkhhkhkhhkhkhhkhhhkdhhhdhhhkhhhhhhhhhkhhhkhhhkhhhkhhdhhhdhhhk dhk kkhkrk*x*

**--> DSECT: MCOPQUAD FORVAT OF ONE OP ENTRY. MACRO DEFINITIONS *
*. ARE TRANSLATED | NTO ONE OPS FOR SUBSEQUENT | NTERPRETATION *
* *
* * x % *x * % * % *x * *x * *x *x % *x * *x * *x *x * *x * *x * *x *x * *x * *x * * *x

**--> DSECT: MCPARENT FORVAT FOR SYMBCLI C PARAMETER ENTRY *
* *

k khkkkkhkkkhhkhkkhhkhkhhkhkhhkhkhhkhhhkhhhkhhhdhhhkhhhhhhhhhhhhkhhhkhhhkhhdhhhkhrhk dhk dkhkrk*x*

**--> DSECT: MCPARCPR FORVAT FOR SYMBOLI C PARAMETER DI CTI ONARY
*. ENTRY. ONE ENTRY FOR EACH SYM PARAM ON ENTRY TO MEXPND

*

EE I

* * *x % * *x * * *x * % *x * % *x *x * * *x * * *x * * *x * * *x * * * * * * *x

ASPLM620- 6

**.-.> DSECT: MCPARSUB FORMAT FOR DI CT ENTRY FOR SUBLI ST OPRNDS *
* ONE ENTRY FOR EACH ELEMENT OF SUBLI ST OF SYM PARAM ENTRY *

*
* : *x * * % % *x *x * % *x *x * % * *x * * % *x *x * * % *x *x * * *x *x * * * *x *x *
**-.-> DSECT: MCSEQ FORMAT OF SEQUENCE SYMBOL ENTRY *

* *

* *x % *x * % * % *x % *x * * * * *x * *x * * * * *x * *x * * *x * *x * *x * * *x *

**._.> DSECT: MSGBLOCK ERROR MESSAGE BLOCK * * * * * % % * * % *§
**__> DSECT: MXPNTSAV CONTROL FOR LEVEL OF MACRO EXPANSION * * S
* ONE |'S ALLOCATED FOR EACH LEVEL OF MACRO CALL A

NAVES: MKP__ A

* *x % *x * *x * % *x * *x * * * * *x * *x * * * * *x * *x * * *x * *x * *x * * *x *

**.-.> DSECT: OPCODTB DESCRI BES 1 ENTRY I N OPOCDE TABLE

* LOCATI ON: ELEMENTS OF TABLE I N CSECT OPCOD1 OF ASSEM_BER

*. GENERATI ON: 1 CALL TO MACRO OPG CREATES AN ELEMENT.

*. SECTI ONS OPCTYPE, OPCHEX, OPCVASK CORRESPOND TO SI M LARLY- NAI\/ED
* SECTI ONS OF DuMwy SECTI ON RCODBLK. SEE CSECT OPCODL. .
* NAMES: OPC-----

*

*--> DSECT: QUCMPRSD CONTROL BLOCK FOR QUTPUT CMPRS OPTION . .

THI' S BLOCK DESCRI BES AREA USED BY OUTPT2 WHEN DO NG THE
CMPRS LI STING OPTION (2 STMIS/LINE). | T CONTAINS VARI ABLES,
FLAGS, AND SPACE FOR $OU#NORM PARTI AL CARD | MAGES, WH CH
ARE SAVED AND USED FOR THE LEFT- HAND- SI DE OF THE PAGE.

THI S BLOCK IS ALLOCATED SPACE ONLY | F THE CVMPRS PARM | S
USED. THE @ OUCMPRSD | S STORED | N OQUCMPRAD VARI ABLE.

LOCATI ON: | N DYNAM C AREA, ACQUI RED BY $ALLOCH I N QUI NT1.
NAVES: OUCM - - -

L S I .

**-.-.> DSECT: QUSTMIIM STATEMENT | MAGE USED IN QUTPUT . . .

*, USED I N CMPRS COPTI ON HANDLER OF OUTPT2 TO ACCESS PO?TI O\IS
*. OF | NCOM NG STATEMENTS TO BE SAVED.

* NAMVES: QUST- - - -

*

**.-.> DSECT: RCODBLK RECORD CODE BLCCK - VARI ABLE DATA FOR STM.

* AN RCODBLK | S CREATED BY EI THER | AMOP1 OR | BASML DURI NG

* ASSEMBLER PASS 1 FOR EVERY STATEMENT W TH AN ACCEPTABLE

* OPERATION CODE. | T CONTAINS VARI ABLE | NFORVATI ON WHI CH

* DEPENDS ON THE TYPE OF | NSTRUCTI OQN, AND MAY | NCLUDE HEX

*, MACHI NE CODES AND MASKS, ALl GNVENT | NFORVATI ON, LI TERAL

*. ADDRESSES, EQU SYMBOL ADDRESSES, AND 1 -10 CNCBLOCKS FOR DC

* COMVANDS. THE MOST COVMMON LENGTHS ARE 8 AND 12.

* LOCATI ON: CREATED I N AREA | ARCB(I N | AMOP1) OR | BRCB(I N

* | BASML) . STORED I N LOW AREA AFTER | TS RSBLOCK BY UTPUTL.

* FOR MACHI NE | NSTRUCTI ONS, MOVED TO | CRCB(I N | CMOP2) | N PASS 2
* NAMES: RC------ .
*

ASPLM620- 7

**.-.> DSECT: REBLK SCAN PO NTER/ ERROR CODE PAIR BLOCK.

* LOCATI ON: AVREBLK(AVWAKTABL DSECT), CREATED BY ERRTAG SUBR
*. MOVED | NTO LOW AREA FOLLOW NG CORRESPONDI NG RCCDBLK. MOVED
*. BY UTGET2 BACK | NTO AVREBLK AREA | N AVWAKTABL DURI NG PASS 2.
* *NOTE* ONLY EXI ST FOR STATEMENTS HAVI NG 1 OR MORE ERRORS OR
* WARNI NG MESSAGES ATTACHED TO I T.

*
*

**--> DSECT: RECORBLK REPLACE MODULE- DESCRI BES 1 REAL- REPLACE PAI R

* THI' S DSECT DESCRI BES 1 ENTRY I N THE TABLE RECORRAD.

* WHEN AN ENTRY PO NT | S REPLACED, A RECORBLK | S CREATED FOR

* IT AND FI LLED W TH VALUES FROM THE ENTRY PO NT' S RFSYMBLK.

* THE ENTRY ADDRESS OF THE NEW ENTRY IS FOUND FROM THE SYMBOL

* TABLE (WHI CH STILL EXI STS), AND | S SAVED | NTO THE RECFPSW

* FIELD (OR A -1 PLACED HERE TO SHOW THE ENTRY COULD NOT BE

* FOUND | N THE USER PROGRAM) . USI NG THE RECAXAD FI ELD, WHI CH .
*. PO NTS TO THE ADCON | N AVWWKTABL OF THE REAL ROUTI NE, THE REAL.
*. ADCON | S SAVED I N RECADRE, AND I T I S REPLACED BY THE ADDRESS .
* OF REFAKE. A CODE |I'S PLACED | NTO THE HI - ORDER BYTE OF THE

* WORD | N AWKTABL, WHI CH IS USED BY REFAKE TO | DENTI FY VH CH

* ENTRY | S CALLED. .
* AT THE END OF A REPLACE RUN, THE REAL ADCONS ARE MOVED .
* BACK TO THEI R PROPER PLACES | N AVWAKTABL, USI NG THE RECAXAD

* FI ELD OF EACH RECORBLK ELEMENT I N THE RECORRAD TABLE.

* **NOTE** FI RST SECTI ON OF DSECT SAME AS DSECT RFSYMBLK.

* LOCATI ON: CSECT REMONI, TABLE RECORRAD.

* NAMVES: REC-----

*

**..> DSECT: RFSYMBLK REPLACE MODULE: 1 ENTRY I N TABLE CSECT RFSYMS .
* EACH SECTI ON OF RFSYM5 G VES ElI THER A REPLACABLE

* CSECT NAME OR ONE COF | TS ENTRY PO NT NAMES. THE ENTRY

* PO NT ELEMENTS CONTAI N VARI QUS PO NTERS WHI CH ARE USED TO

*. G VE OFFSET ADDRESSES FOR REAL ENTRY ADDRESS CONSTANTS OR

*, FOR VARI QUS CHECKI NG CODE | N THE REPLACE MONI TOR

* **NOTE** THI'S DSECT IS SAME AS FI RST PART OF RECORBLK DSECT.

* GENERATI ON: 1 CALL TO RFSGN MACRO CREATS 1 CSECT ELEMENT

* AND 1 TO RECSMAX ENTRY ELEMENTS.

* LOCATI ON: CSECT RFSYMs.

*
*

**--> DSECT: RSBLOCK RECORD SOURCE BLOCK- SOURCE CODE, FLAGS. . .
*. AN RSBLOCK | S CREATED FOR EVERY SOURCE STATEMENT BY | NCARD
* AND CONTAI NS DATA COMWON TO EVERY STATEMENT, SUCH AS 1-3

*, SOQURCE CARD | MAGES, FLAGS FOR EXI STENCE OF OTHER RECORD

*. BLOCKS. ONLY RECORD BLOCK NECESSARY FOR A SOURCE STATEMENT.
* LOCATI ON: CREATED | N AVRSBLOC (AVWAKTABL DSECT) BY | NCARD,

* W TH MODI FI CATI ON BY ERRTAG AND MOCONL. MOVED TO LOW END

* OF FREEAREA BY UTPUT1, AND REMAI NS THERE.

* NAMES: RSB- - - - -

*

* ok X F F

*
*
*
*
*
*
*
*
*

E o T R R * % % 3k X X Xk

E o T R R

o>
o>
o>
o>
o>
o>

L=

ASPLM620- 8

DSECT: RSCBLK RECORD SOURCE- CONTI NUATI ONS, SEQUENCE #'S .
CREATED BY | NCARD FOR ANY STATEMENT HAVI NG El THER SEQUENCE
NUMBERS OR CONTI NUATI ON PUNCHES.

LOCATI ON: CREATED BY | NCARD | N AVRSCBLK(AYWKTABL) DURI NG
ASSEMBLY PASS 1. MOVED TO LOW END OF DYNAM C AREA BY UTPUTL,
FOLLOW NG CORRESPONDI NG REBLK(I F ONE EXI STS). REMAINS IN
THAT AREA FOR REST OF PROCESSI NG

NAMES: RSC-----

DSECT: RSOURCE DESCRI PTI ON OF A SI NGLE SOURCE CARD .
USED FOR | NPUT PROCESSI NG BY SUBROUTI NE | NCARD.
LOCATI ON: AVRSBLOC(AWNKTABL) DURI NG CREATI ON OF RSBLOCK.
NAMES: RSO ----

DSECT: SYMSECT ASSEMBLER SYMBOL TABLE ENTRY.
CREATED BY ENTRY SYENT1 OF CSECT SYMOPS, AND HAS VALUES ADDED
BY MOCONL, | BASML, FOR VALUE, SECTION I D, LENGTH ATTRI BUTE,

AND BY ESDOPRS FOR SPECI AL ATTRI BUTES(CSECT, ETC) .
LOCATI ON: FREEAREA H GH END ($ALLOCH D).

DSECT: X$SLOTFORMAT FOR XGET- XPUT MONI TOR TABLE
USED | N XDDGET AND XDDPUT TO CONTROL USE OF CERTAI N
DD NAMES BY USER W TH XGET- XPUT PERM TTED.

DSECT: XDECI B CONTROL BLOCK CREATED BY XDECI MACRO. . .
AN XDECI B | S CREATED BY EACH CALL TO THE XDECI MACRO, AND
CONTAINS THE @ XXXXDECI, SAVEWORDS FOR REGS R14, R15, RO, AND .
WORDS FOR RETURN VALUES FOR REG STER R1, AND THE ARGUMENT REG
THI'S DSECT 1S USED ONLY | N MODULE XXXXDECI .
GENERATI ON: XDECI
NAMES: XDECI - - -

DSECT: XDECOB CONTROL BLOCK CREATED BY XDECO. . .
AN XDECOB | S CREATED FOR EACH XDECO CALL, AND CO\ITAI NS THE
@ XXXXDECO MODULE, SAVE WORDS FOR REGS R14, R15, RO, AND A
WORD FOR THE VALUE TO BE CONVERTED TO DECI MAL.
XDECOB |'S USED ONLY I N CSECT XXXXDECO.
GENERATI ON: XDECO
NAMES: XDECO- - -

DSECT: XHEXIB CONTROL BLOCK CREATE BY XHEXI . . .
AN XHEXI B | S CREATED FOR XHEXI CALL, AND CONTAI NS THE

. @ XXXXHEXI MODULE, SAVE WORDS R14, R15, R0, AND A WORD VALUE THAT HAS.
BEEN CONVERTED .

XHEXI 1S USED ONLY | N CSECT XXXXHEXI
GENERATI ON XHEXI
NAVES XHEXI

ASPLM620- 9

.--> DSECT: XHEXOB CONTROL BLOCK CREATED BY XHEXO . . .
AN XHEXOB | S CREATED FOR XHEXO CALL, AND CONTAI NS THE @
XXXXHEXO MODULE, SAVE WORDS FOR R14-R2 AND THE PLACE TO RETURN
XHEXOB |I'S USED ONLY I N CSECT XXXXHEXO.
GENERATI ON: XXXXHEXO
NAMES: XHEXO- - - -

EE I T

**..> DSECT: X OBLOCK CONTROL BLOCK FOR | NPUT/ QUTPUT MACROS
* TH S BLOCK | S CREATED FOR ANY |/ O MACRO BY THE | NNER MACRO
* XIONR, AND CONTAI NS THE ADCON FOR THE DESI RED |/ O ENTRYPT,
*, SAVE WORDS FOR MODFI ED REGS R14, R15, RO, AND THE LENGTH FOR
*. THE 1/ O AREA TO BE READ OR WRI TTEN.

* THI'S DSECT IS ONLY USED I N CSECT XXXXI OCO,

* GENERATI ON: BY MACRO Xl ONR (FOR $READ, $SORC, $PRNT, $PNCH) .

* NAMES: XIO-----

*

**--> DSECT: XSPI EBLK | NTERRUPT COMVUNI CATI ONS CONTROL BLOCK . . .
* THI'S BLOCK CONTAI NS EXI' T ADDRESSES AND | NTERRUPT MASKS FOR
* USE | N HANDLI NG THE 15 PROGRAM EXCEPTI ONS. THE | NTERRUPT

* MASK |'S EXTENDED TO A FULLWORD FOR EASE OF TESTI NG AGAI NST
*. THE | NTERRUPTS THAT WERE DESI RED TO BE TRAPPED. THE EXIT

*. ADDRESS |'S OF LENGTH 3 FOR CHANG NG THE PSWONLY 3 BYTE @

* LOCATI ON: | NSI DE $SPI E MACRO EXPANSI ON

* GENERATI ON: ONE XSPI EBLK | S GENERATED FOR EVERY $SPI E

* EXPANSI ON EXCEPT LI NKAGE TERM NATI ON & RESTORATI ON

* NAMES: XSP-----

*

**.-> DSECT: XXSNAPC CONTROL BLOCK USED BY THE XSNAP MACRO . . .

* THI' S BLOCK IS CREATED BY EVERY PRI NTI NG XSNAP MACRO. I T

* CONTAI NS THE EXACT CONTENTS OF THE GP REG STERS BEFORE THE
* XSNAP WAS CALLED, A FLAG BYTE | NDI CATI NG DESI RED QUTPUT AND
* SPECI AL OPTI ONS, THE NUMBER OF ADDRESS PAI RS USED I N THE

* XSNAP STORAGE= OPERAND, THE ADDRESS PAI RS THEMSELVES, AND

*, THE ADDRESS CONSTANT FOR XXXXSNAP. THE BYTE XXSFLAGS MAY

*. HAVE SEVERAL BI TS TURNED ON REQUESTI NG SPECI AL ASSI ST

* SERVI CES, SUCH AS USER DEBUGG NG OQUTPUT AND USER DUMP. THE
* BI TS ARE SUPPLI ED BY XSNAP OPERAND T(3), AND HAVE

* MEANI NG ONLY WHEN USED | NSI DE ASSI ST W TH THE SPECI AL ASSI ST
* VERSI ON OF THE CSECT XXXXSNAP.

* GENERATI ON: XSNAP MACRO, W TH T= ANY TYPE BUT ST OR STCORE.

*
*

&VALLCOCH
&VALLOCL
$ALI GN
$ALI R
$ALLOCH
$ALLOCL
$AL2
$CALL
$CKALN
$DALLOCH
$DBG
$DI SK
$ERCGN
$GLCC
$GTAD
$LV
$MBG
$PNCH
$PRNT
$READ
$RETURN
$SAVE
$SCOF
$SCPT
$SDEF
$SERR
$SETRT
$SLCC
$SORC
$SPI E
$STV
$TIRC
APCCN
ASPAGE
ASPRNT
ASRECL
ASTI ME
ASTI MR
CONG
EVCG

| BPRTAB
I CT
OoPG
OPGT
REPRNT
RFSCGN
WCONG
XCALL
XCHAR
XDECI
XDECO
XCGET
XHEXI HE
XHEXO HE
XI DENT

APPENDI X 1 V. MACRO | NSTRUCTI ONS

01628240
01628040
01433000
01477000
01578000
01604000
01325000
01268400
01495000
01633000
01305000
01189500
01196000
01511000
01778000
01789000
01210530
01217500
01231000
01244500
01280400
01292400
01535000
01557000
01663000
01680400
01717000
01523000
01257000
01362230
01817000
02061000
02102120
02156200
02120060
02156750
02125000
02158300
01833000
01853000
01880200
01915000
01929000
01999000
02028080
02028340
02035000
02163000
00009000
00034080
00034640
01262056
00035080
00035360
00041500

01/31/73 -

QO OWOWOVWOWWOWWOWOWWMWWMOMMWMOWONNNNNNNOOCOOOOODGITOTOTONOT N OO DRMEDRDNOWWWWWWWW

=

ASPLM530-

2.1/ A

1

XI ONR
XLOOK
XMUSE
XPUT
XRETURN
XSAVE
XSNAP
XSRNR
XSRTR
XXDKEDCB

00077000
00145000
00185000
01262090
00339000
00507000
00787000
01089000
01371000
01189060

10
10
10
10
10
10
10
11
11
11

ASPLM530-

2

EE R T R

L R T . S

E o I R R

L I

L T

* Ok X X %

L I I R

ASPLM630- 3

MACRO. &MALLOCH GET CORE IN H GH FREEAREA. SAME AS &ALLOCH *
EXCEPT USES AVGEN2CD AS H GH END PO NTER. USED I N MEXPND *

&R |'S REG NEW USEABLE @ APPEARS | N *
& G VES REG STER DESI RED LENGTH | SIN *
&OVRFL | S BRANCH @ | F OVERFLOW OCCURS *
*

* x % *x * % * % *x % *x * *x * * *x * *x * * *x * *x * *x *x * *x * *x * * *

MACRO &VALLOCL GET CORE I N LOW FREEAREA. SAME AS &ALLOCL
EXCEPT USES AVGEN2CD AS PO NTER TO FREE HI GH AREA. USED I N
MEXPND

*
*
*
*
&R G VES REG STER WHERE ADDRESS OF NEW USEABLE AREA APPEARS *
& G VES REG STER CONTAI NI NG LENGTH DESI RED *
&OVRFL |'S @ TO BE BRANCHED TO | F OVERFLOW *
&LENG IS THE LENGTH TO BE ALLOCATED *S

*

* * % *x * % * % *x % *x * * * * *x * *x * * *x * *x * * *x * *x * *x * * *x

MACRO: $ALIGN GET, ALI GN, RESTORE UPDATED LOCATI ON COUNTER. *
USED TO ALI GN LOCATI ON COUNTER TO H, F, OR D BOUNDARI ES. *
&R W LL CONTAI N ALI GNED VALUE OF LOCATI ON COUNTER *
&A G VES ALI GNVENT REQUIRED , | F I N PARENTHESES, G VES REG *
IF NOT, d VES DECI MAL NUMBER 1-3-7 FOR H F, D ALI GN *
&TAG | F CODED- MEANS THAT LOCATI ON COUNTER IS ALREADY IN &R *
USES MACROS: $ALI GR $GLCC, $SLCC *

*

* * *x % * *x % * *x % * *x * * *x * * *x * * *x * * * * * * *x * * * *

MACRO: $ALICGR ALI GN VALUE | N REG STER (USUALLY LOCCNTR). *
ALl GN REG STER MACRO- ALI GN REG STER &R TO BOUNDARY G VEN *

BY VALUE IN REG &A, WHICH HAS 1,3,7 ETC IN IT. *

*

* * *x % * *x % * *x % * *x * * *x * * *x * * *x * * * *x * * *x * * * *

MACRO. $ALLOCH GET CORE | N FREEAREA HI GH END (ASSEM.BER) . *
&R | S REG STER NEW USABLE ADDRESS APPEARS | N. *

& G VES REG STER LENGTH DESIRED | S I N. *
&OVRFL |'S ADDRESS TO BE BRANCHED TO | F OVERFLOW OCCURS. *

*

* *x % *x * % * % *x % *x * * * * *x * *x * * * * *x * *x * * * * *x * *x

MACRO: $ALLOCL GET CORE | N LOW FREEAREA (I N ASSEMBLER) . *
&R G VES REG STER WHERE ADDRESS OF NEW USABLE AREA APPEARS *

&L G VES REG STER CONTAI NI NG THE LENGTH DESI RED. *
&OVRFL | S ADDRESS TO BE BRANCHED TO | F OVERFLOW OCCURS. *

*

* *x % *x * % * * *x % *x * *x *x * *x * *x * * *x * *x * *x * * *x * *x * *x

MACRO. $AL2 CREATE HALFWORD ADDRESS OFFSET TABLE. *
USED TO GENERATE LI ST OF AL2 ADDRESS CONSTANTS WHI CH *
CONTAI N THE RELATI VE ADDRESS OF EACH I TEM I N &LI ST FROM &BASE*
&OFSET G VES A NUMBER TO BE ADDED OR SUBTRACTED WHEN SETTI NG *
UP THE EQU FOR THE LABEL, SO THAT | NDEXI NG MAY START ANYWHERE *
& |'S CODED | F THE OFFSET LI ST SHOULD BE PRECEDED BY LENGTH *
SET UP FOR BXLE . *

* *x % *x * % * % *x % *x * * *x * *x * *x * * *x * *x * * *x * *x * *x * * *x

* Ok X X F

* F Xk

L I

* * ok Xk

b T

* * X * % X X 3k X X

E o I

*

ASPLM630- 4

MACRG $CALL SUBROUTI NE CALL | NSI DE ASSI ST ASSEMBLER.
&ENTRY ENTRY PO NT NAME TO BE CALLED, OS LI NKAGE.
NOTE CGENERATES NAME W TH AX PREFI X, SO CAN ONLY BE USED
I NSI DE ASSEMBLER WHERE AVWKTABL USI NG HOLDS.

* *x % *x * % * * *x % *x * *x *x * *x * *x * * *x * *x * *x * * *x * *x * *x

* ok X F ok

MACRO $CKALN CHECK LOC- COUNTER ALI GNVENT, BRANCH I F SO
USED TO CHECK ALI GNMENT - &VASK IS 1-3-7, &B IS BRANCH LCC
| F LOCATI ON COUNTER IS PROPERLY ALI GNED.

* *x % *x * % * % *x % *x * * * * *x * *x * * * * *x * *x * * * * *x * *x

* F Xk

MACRO $DALLOCH RETURN CORE- H GH FREEAREA (| N ASSEMBLER) *
NOTE THIS IS A STACK POP TO BE USED W TH $ALLOCH (PUSH) FOR*
FUTURE USE | N MACRO ASSEMBLER. AS OF 8/9/70 I T I'S UNUSED. *
&R 1S A WORK REG STER, WHI CH W LL BE DESTROYED *
&L REPRESENTS THE LENGTH. IF 1ST CHAR IS ' (', WLL BE *
TAKEN AS REGQ STER CONTAI NI NG THE LENGIH, OTHER W SE TO *
BE AN ACTUAL LENGTH TO BE ADDED. *

*

* * % *x * % * * *x % *x * * * * *x * *x * * * * *x * *x * * * * *x * *x

MACRO $DBG SET TRACE, DEBUGGE NG SET VARI ABLES FOR ASM
&D HEX FLAG BYTE FOR USE I N TM | NSTRUCTI ON.
&T 'S TRACE MODE FOR AN XSNAP = NO *, SNAP.
SEE MACRCS $RETURN, $SAVE, XSRTR FOR GENERATI ON OF TRACE CODE
ON ROUTI NE ENTRY/ EXI T. SEE ALSO ASS| ST PROGRAM LOG C MANUAL.

* *x *x * * *x % * *x % * *x * * *x * * *x * * *x * * *x *x * * *x * * * *

E o T

MACRO: $DI SK CALL DISK UTILITY * * * * % * % % % * % % % *
$DI SK CALLS MACRO XI ONR TO SET UP A BRANCH TO A DI SK
UTI LI TY ROUTI NE.
USES MACRO Xl ONR

* *x *x % * *x % * *x % * *x * * *x * * *x * * *x * * * *x * * *x * * * *

L I

MACRO: $ERCGN GENERATE COVPLETI ON CODE BLOCK FOR XXXXSNAP
EACH CALL CREATES 1 ENTRY DESCRI BED BY DSECT ERCOMPCD.
&CODE CHARACTER VALUE OF ERROR CODE NUMBER.

&V5ESG ERROR MESSAGE TO BE PRI NTED
&TYPE TYPE OF COVPLETI ON CODE - SYSTEM ASSI ST, OR USER.
NOTE | F &OPTMS = 0, NO MESSAGE W LL BE GENED, ONLY CODE.

* *x % *x * % * * *x % *x * * * * *x * *x * * * * *x * *x * * * * *x * *x

L I

*

MACRG $GLOC GET LOCATI ON COUNTER | NTO REG STER
GET LOCATI ON COUNTER MACRO- PUTS LOCCNTR VALUE I N &RG

* * % *x * % * % *x % *x * * * * *x * *x * * *x * *x * * *x * *x * *x * * *x

*

MACRG: $GTAD LOAD ADCON | NTO REG STER FORM AVWKTABL. *

* * *x * * *x * * *x * * *x * * * *x * * *x * * *x * * *x *x * * *x * * * *

MACRO: $LV LOAD VARI ABLE LENGTH VALUE | NTO REG STER(ASI\/B) *
LOAD VARI ABLE - PLACES &L BYTES I N &RG FROM &AD
H GH ORDER BYTES ARE ZEROED, USES AVFWORK1 *

* * *x % * *x * * *x * % *x * % *x *x * * *x * * *x * * *x * * * * * * * *

MACRO $MSG USED TO GENERATE LI NE I N M5G TABLE A
&NVBR | S MESSAGE # (3 DA TS)
&VBG | S QUOTED STRI NG OF MESSAGE
&FLAG | S FLAG BYTE

>>W0n

*

*

* %k kX * ok X Xk * ok X X %

E o T * % 3k *

b T

* Xk F

o T R

EE R T R R

ASPLM630- 5

GENERATES: (LENGTH 1 OF MSG) U BYTE +3 FOR LENGTH OF MSG A
(FLAG BYTE) 1 BYTE S
CHAR FORM OF NVBR 3 BYTES S
--> MACRO $PNCH PUNCH A CARD, BRANCH | F RECORD OVERFLOW *
&XAREA, &XNUM SEE XI ONR MACRO FOR EXPLANATI ON, OR XPNCH WRTUP *
&OVER |'S LABEL TO BE BRANCHED TO | F RECORDS EXCEED LI M T. *
USES MACROS: Xl ONR *

* *x % *x * % * % *x % *x * * * * *x * *x * * *x * *x * * * * *x * *x * * *

MACRO: $PRNT PRI NT A LINE, BRANCH | F RECORD OVERFLOVE. *
&XAREA, &XNUM SEE XI ONR MACRO FOR EXPLANATI ON, OR XPRNT WRI TUP*
&OVER | S LABEL TO BE BRANCHED TO | F RECORDS EXCEED LIMT. *
USES MACROS: XI ONR *

* *x % *x * % *x % *x % *x * * * * *x * *x * * *x * *x * * *x * *x * *x * * *x

MACRG: $READ READ CARD DURI NG EXECUTI ON, BRANCH | F EOF. *
&XAREA, &XNUM SEE XI ONR MACRO FOR EXPLANATI ON, OR XREAD WRI TUP*
&EOF LABEL TO BE BRANCHED TO | F END- FI LE OCCURS. *
USES MACROS: XI ONR *

* * *x % * *x * * *x * % *x * % * *x * * *x * * *x * * *x * * * * * * * *

MACRO $RETURN RETURN FROM SUBROUTI NE, OS LI NKAGE.
SUPPLI ES EXTRA DEBUGGE NG CONTROL AND DEFAULTS TO XRETURN.
USES MACROS: XRETURN

* *x *x k% * *x % * *x % * *x * * *x * * *x * * *x *x * * *x * * *x * * * *

* % k%

MACRO: $SAVE SUBROUTI NE ENTRY SETUP, OS LI NKAGE.
SUPPLI ES EXTRA DEBUGGE NG CONTROL AND DEFAULTS TO XSAVE MACRO
USES MACROS: XSAVE

* * *x % * *x % * *x * * *x * * *x * % *x * * *x * * * * * * *x * * * *

* % ok ok

MACRO. $SCCF CONVERT REGQ STER SCAN PO NTER TO OFFSET VALUE.
SCAN PO NTER OFFSET MACRO - PLACE SCAN PO NTER REG STER &SCP
I NTO WORK REGQ STER &RG, FIND OFFSET, AND STORE I T | NTO &BYTE
| F &BYTE SPECI FI ED. &AD= WORD G VI NG BEG NNI NG @ FOR OFFSET.

* *x *x % * *x % * *x % * *x * * *x * * *x * * *x * * * *x * * *x * * * *

L A T

MACRO: $SCPT CONVERT OFFSET TO A SCAN PO NTER @ | NTO REG
GET SCAN PO NTER ADDRESS FROM OFFSET- OFFSET 1S I N &BYTE, ADDR
I S CREATED IN &RG. &AD G VES BEG NNI NG @ OF FI ELD.

* *x *x * * *x % * *x % * *x * * *x * * *x * * *x * * * *x * * *x * * * *

E o

MACRO: $SDEF STORE VALUES | N SYMBOL TABLE ENTRY, FLAG DEFN. *
&RVAL REG STER CONTAI NI NG SYMBOL VALUE. *
&RESD REGQ STER CONTAI NI NG SECTION | D OF SYMBCL. *
&RLENG REQ STER CONTAI NI NG LENGTH ATTRI BUTE-1 FOR SYMBOL. **
NOTE SYMSECT DSECT MUST HAVE VALI D USING AT TI ME OF CALL. *

* *x % *x * % * % *x % *x * * * * *x * *x * * *x * *x * * *x * *x * *x * * *x

MACRO $SERR SET ERROR CODE MESSAGES AND EQU SYMBOLS.
CALLED 2 TIMES FOR EACH ERROR EQU, 1 TIME TO SET UP EQU, 1
TI ME TO CREATE ERROR MESSAGE DC S I N CSECT QUTPUT OF ASMBLER
&ERR 'S LAST 5 CHARACTERS OF ERROR MESSAGE EQU SYMBOL.
&NVBG 'S THE ERROR MESSAGE ASSCCI ATED W TH THE EQU.
&N\M IS THE ERROR CODE FOR EXTERNAL USE - ASH##.

* * *x % * *x % * *x % * *x * * *x * * *x * * *x * * * *x * * *x * * * *

EE I T R

ASPLM630- 6

*--> MACRO S$SETRT SET UP TRT TABLE FOR SCANNI NG | N ASSEM.BER *
* USED | NSI DE ASSI ST ASSEMBLER TO CREATE TEMPORARY TRT TABLE | N*
X COMMON AREA AWIZTAB (VWHI CH CONTAINS 256 HEX 0'S).

X &LIST IS LI ST OF CHARACTER/ VALUE PAI RS, W TH CHARACTERS *
* ENCLOSED I N QUOTES. CORRESPONDONG VALUES ARE MOVED | NTO *
* CORRESPON: | NG LOCATI ONS | N 256- BYTE TABLE OF ZERCS. *
* IF VALUE | S OM TTED, ZERO IS ASSUMED. *
* *

* *x % *x * % * % *x * *x * * *x * *x * *x * * *x * *x * * * * *x * *x * * *

*

--> MACRO. $SLCC SET LOCATI ON COUNTER TO REGQ STER VALUE.
SET LOCATI ON COUNTER MACRO - SETS &RG AS LOCCNTR VALUE

* * *x * * *x % * *x * * *x * * *x *x * * *x * * *x * * *x * * * *x * * *x * *

* X

*--> MACRO $SORC READ ASSEMBLER SOURCE CARD, BRANCH | F ECF. *
X &XAREA, &XNUM SEE XI ONR MACRO FOR EXPLANATI ON, OR XREAD WRI TUP*
Cx &EOF LABEL TO BE BRANCHED TO | F END- FI LE OCCURS. *

* USES MACROS: Xl ONR *

*

* * % *x * *x * % *x * *x * *x * * *x * *x * * * * *x * *x * *x * * *x * *x * *

--> MACRO. $SPIE | NTERRUPT COMMUNI CATI ONS ~ * * * * * * % x
SCOTT A. SMTH - FALL 1971.
MAY BE USED BY OS OR DOS SYSTEMS TO SPECI FY THE ADDRESS
OF AN | NTERRUPTI ON EXI T ROUTI NE AND TO SPECI FY THE PROGRAM
| NTERRUPT TYPES THAT ARE TO CAUSE THE EXI T ROUTI NE TO BE
G VEN CONTROL.
&EXI T LABEL TO BE BRANCHED TO FOR THE | NTERRUPTI ON
EXIT. ADDRESS MAY BE IN A REG STER.
&TYPES A LIST OF | NTERRUPTI ON TYPES TO CATCH. IF TH'S
|'S NOT SPECI FI ED, A DEFAULT VALUE OF ((1,15))
| S ASSUMED. THE FORM OF THI'S OPERAND IS A LI ST
OF OPERANDS SEPARATED BY COMMAS. THE LI ST | TSELF
|'S ENCLOSED | N PARENTHESES W TH EACH OPERAND
SPECI FYI NG A GROUP OF | NTERRUPT TYPES TO CATCH.
EACH OF THESE IS EI THER A SINGLE | NTEGER BETWEEN
1 AND 15, OR A PAIR OF | NTEGERS BETWEEN 1 & 15
REPRESENTI NG AN | NCLUSI VE RANGE OF | NTERRUPTS.
EACH PAIR |'S ENCLOSED | N PARENTHESES
&ACTI ON= SPECI FI ES THE ACTION TH'S MACRO |'S TO TAKE.
-->INIT: IDENTIFIES TH'S AS AN I NI TIAL $SPI E CALL
AND | NI TI ALI ZATION | S TO BE PERFORVED.
-->CR CREATE A NEW $SPI E COMMUNI CATI ON, BUT DO
NOT REI NI TI ALI ZE.
-->(RS, (REG)) RESTORE A PREVI OUS $SPI E COMMUNI CATI ON
LI NK USI NG THE XSPI EBLK AT THE ADDRESS | N THE
REG STER ALL OTHER PARAMETERS ARE | GNORED
+ DEFAULT***| NI T
&CE= THI S SPECI FI ES AN OPTI ONAL CALLABLE EXI T WH CH
MAY RECEI VE TEMPORARY CONTROL | MVEDI ATELY FOLLOW
I NG AN | NTERRUPT. THI'S EXIT MUST RETURN.
REG STERS 14, 15,0, 1 ARE DESTROYED BY THI S MACRO

* * *x % * *x % * *x * * *x *x * * *x * * *x * * *x * * *x * * * *x * * * * *

L T T T R R R S N B N N N N N N N N N N N I
L T N R R N N S N N N N R N N I N N N N N N N

*--> MACRO $STV STORE VARI ABLE LENGTH VALUE FROM REG STER (AS) *
.* STORE VARI ABLE MACRO- STORES &L BYTES FROM LOW ORDER END OF *
X REG STER &RG | NTO ADDRESS &AD. *

*

* * *x % * *x % * *x * * *x * * *x *x * * *x * * *x * * *x * * * *x * * *x * *

ASPLM630- 7

*--> MACRO $TIRC GET Tl ME/ RECORDS DATA FROM OPERATI NG SYSTEM
* THI' S MACRO USES PSU SVC CALL 250 TO OBTAIN TI ME OR

* RECORDS | NFORMATI ON. &TYPE |'S TI MREM TI MUSE, RECREM RECUSE.
* RESULT I'S RETURNED IN RO, I N El THER RECORDS, OR I N TI MER

* UNI TS OF 26.04 M CROSECOND. DESTROYS RO, R1, R15.

Cx *NOTE* MAY HAVE TO BE REWRI TTEN FOR LOCAL CONDI TONS.

Cx &TYPE CAN ALSO BE OF FORM (NAME, ADDR) WHERE ADDR | S AN

* RX- TYPE ADDRESS, AT WHI CH THE MACRO PLACES THE FOLLOW NG

* BYTES 0-4 : ACCOUNT NUMBER | NFORMATI ON FROM

* BYTES 5-12 : JOB NAME FROM

* BYTES 13-32 : PROGRAMVER NAME JOB CARD

* TH'S FORM NEEDED ONLY | F &BACCT=1, AND |S COVPLETELY LOCAL
* TO PSU CC, THUS MUST BE REWRI TTEN | F USED ELSEWHERE.

*

* * % *x * % * % *x * *x * * *x * *x * *x * * *x * *x * * * * *x * *x * * %

--> MACRO APCGN GENERATE 1 APCBLK ELEMENT I N APARMS
GENERATES BLOCK FOR PARM OPTI ON SCANNI NG CONTROL, DEPENDI NG
ON DESI RED CHARACTERI STI CS OF THE PARM MAY SKI P GENERATI ON
| F THE REQUI RED OPTI ON DOES NOT EXI ST I N PARTI CULAR SYSTEM
*** SEE DSECT APCBLK AND CSECT APARMS (FROM LABEL APFOUND) .
FOR FURTHER | NFORVATI ON ON HANDLI NG OF BLOCK CREATED BY THI S. .

&PARM NAME OF THE PARM OPTI ON.
&AJOFS NAMVE OF VARI ABLE I N AJOBCON TO BE SET BY TH S PARM
&BI TS VALUE USED TO SET FLAG FOR YES/ NO TYPE PARMS.
| F =PARM AND NOT CALL TYPE, SHOULD BE G VEN VALUE 0.
&G, &CGC USED TO CONTROL GENERATI ON. GENERATION | S SKI PPED

IF &G EQ &GC, THUS ALLOW NG CONDI TI ONAL ASSEMBLY OF PARNMES.
&C THRU &Y G VE TYPE BI TS TO BE PLACED | NTO APCFLAG. EACH
CORRESPONDS TO 1 OR MORE EQU SYMBOLS, AS LI STED. .
&C =1 IF PARM I S NONSTANDARD AND A RCQUTI NE MUST BE CALLED. .

APPLI ES ONLY TO =VALUE TYPE PARMS. THE ROUTI NE CALLED MUST
BE NAVED APA&PARM (APCCALL)

&N =1 I F VALUE CANNOT BE G VEN ANOTHER VALUE ONCE I T HAS
BEEN SET ONCE. MAY BE USED BY ANY PARM TYPE. (APCNRSET)

&D =1 IF PARM | S PARM=DECI VAL VALUE. I F THIS IS CODED

AND PARM | S NOT A SPECI AL CALL TYPE, THEN IT IS ASSUMED THAT
THE VALUE CONVERTED IS TO BE STORED AS A FULLWORD AT THE

G VEN VARI ABLE LOCATI ON I N AJOBCON. (APCD)
&1 =1 IF PARM IS A YES/NO TYPE AND 1BI T ON CORRESPONDS
TO A YES VALUE (1BI T MEANS NO OTHERW SE) . (APCYES1B)

=1 |F PARM | S =DECI VAL # PARM AND MAY NEVER BE
| NCREMENTED AFTER | T HAS BEEN SET (BUT MAY BE DECREASED) .
USED PARTI CULARLY FOR TI ME/ RECORDS LI M TS. (APCNI NCR)

&Y =1 |F THE PARM IS A YES/NO TYPE. OTHERWSE, IT IS
AN =PARM OF SOME SORT. (APCYESNO)
&LK DENOTES WHI CH OF THE POSSI BLE CALLS |'S ALLOWED TO SET

A VALUE FOR THE G VEN PARM CONSI STS OF 3 BITS: ###, WTH

MEANI NGS AS FOLLOW

100 CAN BE SET BY LIMT OR DEFAULT VALUE (APCSETLD)

010 CAN BE SET FROM THE PARM FI ELD (APCSETP)

001 CAN BE SET BY USER FROM $J0OB CARD (APCSETU)
THI'S MACRO USED ONLY | N APARMS CSECT.

L I T S T N T S N N N S S N S S S N S N N N S T R S S O T

L SR T R N T N

* ok X Xk * F Xk

* X

*

L

b R R

* X X ok

E o I T R * Ok X X %

E o I

* Xk F

ASPLM630- 8

MACRO. ASPAGE LI NK TO SECTI ON OF PAGE CONTROL CODE . .
&CODE IS TWO-DIGA T # G VI NG DESI RED SECTI ON OF PAGE CO\ITR(]_
CALL |I'S GENERATED ONLY | F &$BPAGE = 1.

MACRO. ASPRNT PRI NT LI NE | NSI DE MAIN PROG ASSI ST. * * * * *
ASPRNT SETS UP RO=@ LI NE, R1=LENG CLLS I NSUB ASASPRNT OF
ASSI ST. MODI FI ES REGS RO, R1, R14.

&XAREA, &XNUM SAME AS THOSE FOR $PRNT = @ LENGTH TO PRI NT.

* *x % *x * % * % *x % *x * * * * *x * *x * * * * *x * *x * * * * *x * *x

L

MACRO: ASRECL LI NK TO RECORD LIM T CONTROL CODE . .
&CODE IS TWO DIG T NUMBER G VI NG SECTI ON OF ASRECL## CALLED

MACRO. ASTI ME UPDATE TI MER, PRI NT TI M NG MESSAGES(ASSI ST) . *
&ASH NAME OF MESSAGE, |F OM | TED UPDATE TI MER ONLY. *
&VALUE NAMVE OF VALUE TO BE CONVERTED, OM TTED- NO 2ND PART *
NOTE ONLY USABLE | NSI DE MAI N PROGRAM ASSI ST. *

*

* *x % *x * % * * *x % *x * * * * *x * *x * * * * *x * *x * * * * *x * *x

MACRO. ASTI MR LI NK TO TI MER ROUTI NES I N MAI N PROGRAM ASSI ST *
ASTI MR ALLOAS FOR CONDI TI ONAL GENERATI ON OF CALLS TO *
VARI QUS TI' M NG MODULES | NSI DE ASSI ST MAI N PROGRAM DEPENDI NG *
ON THE DESI RED TI M NG METHOD BEI NG USED. *
&CODE 1S 2-DIG T CODE, A VING SECTION OF ASTI MR TO BE CALLED*
&TLEVEL 1S 0,1,2. NO CODE | S CREATED | F &$TI MER<&TLEVEL. *

* *x % *x * % *x % *x % *x * * * * *x * *x * * *x * *x * * *x * *x * *x * * *x

MACRO: CONG GENERATE CONSTANT CODE TABLE (CSECT CODTL1). *
USED I N CODTL1 OF ASSEMBLER TO PRODUCE 1 ENTRY IN *
CONSTANT DESCRI PTI ON BLOCK. SEE CONBLK DSECT I N CODTLL1. *

*x * * % % *x * % % *x *x * % *x *x * * % *x *x * * *x *x * * *x *x *x * * * *x

MACRO. EVCG CREATE ROW OF TRANSI TI ON TABLE (CSECT EVALUT) *
&L LI ST OF PAIRS- JUWMP LABEL, (ERROR CCDE OR STATE #). *

CREATES 1 ROW OF TABLE EVCTAB | N GENERAL EXPRESSI ON EVALUATOR*
CSECT EVALUT. SEE EVCTDSCT DSECT FOR ENTRIES I N EACH ROW *

* *x % *x * % * % *x % *x * * * * *x * *x * * *x * *x * * *x * *x * *x * * *x

MACRO. | BPRTAB GENERATE 1 BLOCK FOR PRI NT SCAN LI ST
USED ONLY I N | BASML. CREATES 1 BLOCK: DSECT | BPSCECT

&OP OPERAND NAME (ON, OFF, ETC).
&VO VALUE TO BE OR D I NTO PRINT BYTE: BIT TO SET ON. OFF.
&VX VALUE TO BE XOR D | NTO PRI NT CONTROL: ElI THER 0

IF BIT ON (&/X OM TTED), OR SAME AS &VO | F * CODED. .

MACRO | CT CREATE CONTROL CODES(| CYFLAG) VALUES(|CMOP2). *
&TYPE TYPE OF | NSTRUCTI ON FORMAT ($RR, $RX, ETC). *
&VALUE VALUE OF CODE REQUI RED FOR TABLE. *

* % * * * % * * % * * * %

MACRO. OPG CREATE 1 ENTRY I N ASM OPCODE TABLE (OPCOD1) .
THE GENERATED ENTRY | S DESCRI BED BY DSECT OPCCODTB.
GENERATES THE 4 FI ELDS OF AN OPCODTB ENTRY - OPCTYPE, OPCHEX,
OPCVASK, AND OPCMNEM | F &HEX OR &VASK ARE OM TTED, THEY

* Xk

EE T T R . T S

L T

L I I T R N N L

* Ok X X %

* X

*

L T S

*

-->

*

-->

*

ASPLM630- 9

ARE ASSUMED TO BE 0. &CODE |'S USED FOR | NSTRUCTI ONS WHICH *
MAY NOT BE GENERATED. IF USED, IT IS 'D FOR DECI MAL | NSTS, *
"F' FOR FLOATI NG PO NT I NSTRUCTIONS, AND 'P* FOR PRI VILEGED *
OPERATIONS. | F THE SPECI FI ED TYPE IS NOT TO BE GENERATED, *
THE APPROPRI ATE GLOBAL VARI ABLE WLL HAVE BEEN SET, AND THE *
OPCCDTB ENTRY W LL NOT BE CREATED. *
&CODE = 'M FOR MACRO OPCODES. *
&CODE = ' FX' FOR EXTENDED FLOATI NG PO NT OPCODES. *
&CODE = ' S370" FOR NON- PRI VI LEGED S/ 370 OPCODESS. *
&CODE = ' P370" FOR PRI VI LEGED S/ 370 OPCODES. *

*

* *k *k K% * *x % * *x * * *x * * *x * * *x * * *x *x * * *x * * *x * * * *

MACRO. OPGT CREATE 2ND LEVEL OPCCDE PTR TABLES (OPCODl). *
USES MACROS: $AL2 *
NOTE &OPNGN VALUES WERE SET BY OPG MACRO. CALLED 1 TI ME ONLY. *

*

* * *x % * *x % * *x % * *x * * *x * * *x * * *x * * * *x * * *x * * * *

MACRO: REPRNT PRI NT MESSACE MACRO FOR REMONI USE .
&VBG G VES RX- TYPE ADDRESS OF MESSAGE TO BE PRI NTED.
&VBG. G VES LENGIH OF THE MESSAGE TO BE PRI NTED.

MODI FI ES REG STERS R7, R8, R14.
CALLS | NSUB REXPRI NT.

MACRO RFSCN GENERATE 1 ENTRY OF REPLACE NAME TABLE(RFSYMS).
RFSGN MACRO |'S USED TO GENERATE THE PRI MARY TABLE .
OF CSECT NAMES AND THEI'R ENTRY PO NT NAMES, WHICH | S USED TO .
DO REPLACEMENT AND CHECKI NG OF STUDENT-WRI TTEN CSECTS.
| F &$REPL=2 AND TYPE=2, RFSGN CREATES AN ELEMENT IN
THE SECOND SECTI ON OF RFSYMs, WHI CH DESCRI BES A CALLABLE
ENTRYPO NT | N REAL ASSI ST ROUTI NES.
&CSECT NAMES A CSECT WHI CH CAN BE REPLACED.
| F TYPE=2, NAMES A CALLABLE ENTRY FOR 2ND SECTI ON. .
&ENTRY IS ALIST OF 1 OR MORE ENTRY PO NT NAMES | N &CSECT. .

IF TYPE=2, THIS ONE IS OM TTED. .
&TYPE = 1 IF & SECT MAY CALL OTHER CSECTS, OM TTED | F NOT.

=2 |F CALL IS TO CREATE CALLABLE ENTRY ELEMENT.

MACRO: WCONG CREATE OFFSETS TO CONSTANT SUBR ADCONS- VWKTABL*
CREATE WCONADS TABLE I N WATABL FOR USE OF CODTL1 AND CNDTL2 *
I N DO NG TABLE- DRI VEN CONSTANT PROCESSI NG CALLED 1 TI ME ONLY*
&C LI ST OF CONSTANT TYPES ALLOWED. (A B C ETQ. *

* * % *x * % * % *x % *x * * * * *x * *x * * *x * *x * * *x * *x * *x * * *x

MACRO: XCALL SUBROUTI NE CALL, OS LI NKAGE, LITERAL FORM *
&ENTRY NAMVE OF ENTRYPO NT TO BE CALLED. *

* *x % *x * % * % *x % *x * * * * *x * *x * * *x * *x * * *x * *x * *x * * *x

MACRO. XCHAR RETURN SAFE RI GHT- END SUBSTRI NG OF A STRING *
JOHN R MASHEY-JULY 1969-360/67*
THI' S MACRO RETURNS | N &XXCHAR THE &NUM CHARACTERS TAKEN FROM *

THE RI GHT END OF THE CHARACTER STRI NG &STRI NG W THOUT *
BLON NG UP | F THERE ARE LESS THAN &NUM CHARS | N &STRI NG *
THI'S MACRO | S USED BY XSAVE, XRETURN, AND XSRNR *
* x % *x * % * % *x * *x * * * * *x * *x * * *x * *x * *x *x * *x * *x * * *

* % Xk 3k X X X X %

L I S T

L S R I . N

ASPLM630- 10

--> MACRO XDECI EXTENDED DECI MAL | NPUT CONVERSI ON * * * * * *
EXTENDED DECI MAL | NPUT MACRO - ENABLES PROGRAMS

WRI TTEN FOR ASSI ST TO BE RUN UNDER OS/ 360 DI RECTLY.
USES MODULE XXXXDECI TO SCAN DECI MAL STRI NG BEG NNI NG AT
&ADDRESS, CONVERT | TS VALUE | NTO REG STER ®, AND SET
REG STER R1 AS A SCAN PO NTER TO THE DELI M TER FOLLOW NG THE
STRING OF DECIMAL DIG TS. THE CONDI TI ON CCDE IS SET BY THE
VALUE I N ®, UNLESS AN ERROR OCCURRS, I N WHI CH CASE CC=3.
SEE ASSI ST USER MANUAL FOR USAGE | NSTRUCTI ONS.

* * % *x * % * % *x * *x * * *x * *x * *x * * *x * *x * * * * *x * *x * * *

L N S . I

--> MACRO XDECO EXTENDED DECI MAL OUTPUT CONVERSI ONF * * * * %
USES MODULE XXXXDECO TO CONVERT VALUE | N REG STER ® TO
AN EDI TED 12-BYTE FI ELD, WTH SI GN, AT LOCATI ON &ADDRESS.
EXTENDED DECI MAL OUTPUT MACRO - ENABLES PROGRAMS
WRI TTEN FOR ASSI ST TO BE RUN UNDER OS/ 360 DI RECTLY.
SEE ASSI ST USER MANUAL FOR USAGE | NSTRUCTI ONS.

* * % *x * % * % *x * *x * * *x * *x * *x * * *x * *x * * * * *x * *x * * *

L R

--> MACRO XGET GET RECORD OFF OF &DDNAME FILE *
Rl CHARD FOALER AUG, 1972 V 5 0 *

MACRO FOR EASY READI NG OFF OF ANY DD FI LE, READS &XNUM *
CHARACTERS. CONDI TION CODE SET TO O NORMALLY, OR TO 1 ON *

END OF FI LE. GENERATI ON CONTROLLED BY &XGETST. *
EXECUTI ON ASSUMES REG 1 PO NTS TO DD NAME *

*

* * *x % * *x * * *x * % *x * * *x *x % * *x * * *x * * *x * * * * * * * * *

--> MACRO XHEXI HEXADECI MAL | NPUT CONVERSI ON MACRO.
WRI TTEN BY ALAN ARTZ 4/17/72

TH' S MACRO TAKES THE VALUE STARTI NG AT THE ADDRESS G VEN BY
&ADDR AND CONVERTS I T AND PUTS THE HEXADECI MAL VALUE I N ®
| F THERE ARE MORE THAN 8 DIG TS, Rl PO NTS TO THE 9TH AND THE
FIRST 8 ARE CONVERTED. | F THERE IS A NON-BLANK, NONNHEX DIG T
FOUND, R1 PO NTS TO THAT CHARACTER AND THE CC=3, OTHERW SE CC SET
BY VALUE I N REG

CALLS MODULE XXXXHEXI TO DO THE ACTUAL CONVERSI ONS

EE R I R R I O R R R I I I S R R R R R O R R I O

L R I T N

--> MACRO XHEXO HEXADECI MAL QUTPUT CONVERSI ON MACRO
VWRI TTEN BY ALAN ARTZ 4/17/ 72
THI' S MACRO TAKES THE VALUE IN & REG AND CONVERTS I T TO
PRI NTABLE FORM
I T PUTS THE CONVERTED VALUE I N AN ElI GHT BYTE AREA STARTI NG AT*
THE ADDRESS G VEN I N &ADDR.

THE CONDI TI ON CODE IS NOT CHANGED AND NETHER ARE THE REGQ STERS*
*

* % * %

CALLS MODULE XXXXHEXO TO DO THE ACTUAL CONVERSI ONS. *

EE R R R R R R R I R I I R I R R R R R R R R O

--> MACRO Xl DENT | DENTI FY ENTRY PO NT FOR XSAVE, $SAVE.
MACRO USED BY XSAVE TO PRODUCE | D AT AN ENTRY PO NT. WLL
USE THE FI RST NON- NULL OPERAND PASSED TO I T AS THE I D.

* *x % *x * % *x % *x * *x * * *x * *x * *x * * *x * *x * * * * *x * *x * * *

* ok Xk

ASPLM630- 11

*
*
*
*
*
*
*
*
*
*
*
*

E o T T R

--> MACRO Xl ONR | NNER MACRO- $READ, $PNCH, $PRNT, $SORC *

ALSO XGET, XPUT, GET, ANDPUT *

JOHN R MASHEY - FEB 1970 - V. 4.0 *

XI ONR | S USED BY XI OPAK MACROS XREAD, XPRNT, XPNCH TO SET UP *

THE REQUI RED CODE FOR CALLI NG THEI R RESPECTI VE SUBROUTI NES. *

* % % AR&JNE'\”’S * % % *

XNANE THE NAME OF THE |/ O ROUTI NE TO BE CALLED. *

XNUM THE LENGTH OF XAREA TO BE PRI NTED, PUNCHED, ETC. *

XAREA THE AREA ON HI CH |/ O OPERATI ON TO BE PERFORMED. *

MAY BE SPECI FI ED BY (0) OR (RO). *

XDEFT DEFAULT VALUE OF XNUM TO BE USED, IF IT IS OM TTED *

* % * * * % * * % * * * %

--> MACRO. XLOOK FIND POSI TI ON OF ELEMENT I N LI ST. *

JOHN R MASHEY - FEB 1970 - V. 4.0 *

MACRO TO FI ND AND RETURN POSTI ON OF ARGUMENT I N A SUBLIST. *

&ARGL ARGUVENT TO BE SEARCHED FOR *

&ARGL LI ST OF ARGUMENTS FOR &ARGL TO BE CHECKED FOR I N *

&XXLOOK THE FIRST POSI TION I N &ARGL | N WHI CH &ARGL |'S *

FOUND, |F ANY. |F &ARGL IS NOT I N &ARGL, &XXLOOK = 0. *

* % * * * % * * % * * * %

*..> MACRO XMUSE BASE REG STER SETUP MACRO FOR XSAVE *

* JOHN R MASHEY - FEB 1970 - V. 4.0 *

* THI'S MACRO |'S CALLED BY XSAVE TO HANDLE BR AND AD OPERANDS, *

* AND PRODUCE APPROPRI ATE USI NGS. &BR AND &AD ARE FROM XSAVE. *

* *

--> MACRO. XPUT PUT A RECORD ONTO FILE &DNAME *

Rl CHARD FOM.ER AUG 1972 V. 5.0 *

MACRO FOR EASY PRI NTI NG ONTO ANY DD FI LE RECORD LENGTH=&XNUM *

| F PRINT FILE, THE FI RST CHARACTER | S USED AS CARRI AGE CONTROL
GENERATI ON CONTROLLED BY &XPUST

EXECUTI ON ASSUVES REG 1 PO NTS TO DD NAMVE *

* %

* ok X X 3k X X

*--> MACRO XRETURN GENERAL RETURN MACRO, OS LI NKAGE *
* JOHN R MASHEY - FEB 1970 - V. 4.0 *
X EXTENDED RETURN MACRO - SEE PSU CC WRI TEUP - XSAVE/ XRETURN *
X FOR EXPLANATI ON AND USE OF OPERANDS. *
* USES MACROS: FREEMAI N, XCHAR, XSRNR *
**k * * % *x % *x * *x * % *x * *x * *x * * *x * *x * *x *x * *x * *x * * *x * *x * *
*--> MACRO XSAVE EXTENDED SAVE MACRO - OS LI NKAGE. *
X JOHN R MASHEY - FEB 1970 - V. 4.0 *
Cx EXTENDED SAVE MACRO - SEE PSU CC WRI TEUP - XSAVE/ XRETURN *
* FOR DESCRI PTI ON OF ARGUMENTS FOR THI S MACRO *
* USES MACROS: GETMAI N, XCHAR, XI DENT, XLOOK, XMJSE, XSRNT, XSRTR *
*x*x * * % *x *x * * % *x *x * % *x *x * * % *x *x * * *x *x * * * *x *x * * * *x * *
*--> MACRO XSNAP EXTENDED SNAP MACRO- DEBUGGE NG- DUMPI NG, *
* JOHN R MASHEY - FEB 1970 - V. 4.0 *
X XSNAP 'S USED FOR STORI NG PRI NTI NG OF REG STERS AND ANY *
X OTHER ADDRESSI BLE AREAS. XSNAP HARMS NO REQ STERS, CAN BE USED*
* I N ANY NUMBER OF CSECTS IN 1 ASSEMBLY, AND PRI NTS REG STERS *
* EXACTLY AS THEY ARE WHEN THE XSNAP | S CALLED. XSNAP *
*

ACTI ON MAY BE MADE CONDI Tl ONAL EI THER AT ASSEMBLY TI ME OR *

*

*

L R T T N N N

* ok X X 3k X X

ASPLM630- 12

DURI NG EXECUTE TI ME. SEE WRI TEUP FOR OPERAND DESCRI PTI ON.
USES MACROS: XLOOK

* *x % *x * % * % *x * *x * * *x * *x * *x * * *x * *x * *x * * *x * *x * * *

--> MACRO XSRNR SAVE/ RESTORE REQ STERS FOR XSAVE/ XRETURN
JOHN R MASHEY- FEB 1970 - V.4.0
THI'S MACRO IS USED BY XSAVE AND XRETURN TO SET UP
REG STER SAVI NG AND RESTORATI ON.
&P IS THE OPCODE TO BE USED. |.E. EITHER L OR ST.
&RG 1S 1 OPERAND FROM THE &RGS OPERAND USED BY XSAVE AND
XRETURN. I T IS EITHER 1 REG STER, OR A PAIR OF REGS
SEPARATED BY A DASH.

* * X

EE I T R

*

&NO15 =0 STATES THAT A RETURN CODE IS CURRENTLY IN REG 15 *
AND SHOULD NOT BE DI STURBED, REGARDLESS OF HOW THE REGS*

ARE SPECI FI ED.
USES MACROS: XCHAR

* *k *x * * *x * * *x * * *x * * * *x * * *x * * *x * * *x * * * *x * * * *

--> MACRO XSRTR CREATE SPECI AL ASSI ST ENTRY/ EXIT TRACE CODE.

*

*

*

*

JOHN R MASHEY-JULY 1969- 360/ 67*

THI'S MACRO IS USED BY XSAVE AND XRETURN TO GENERATE THE

*

TRACE CODE CALLS TO XPRNT COR XSNAP, |F THE TR OPERAND | S USED*

NOTE THIS IS MODI FI ED VERSI ON FOR USE I N ASSI ST ONLY.
USES MACROS: XSNAP

* * % *x * % * % *x * *x * * *x * *x * *x * * *x * *x * * * * *x * *x * * *x

--> MACRO XXDKEDCB GENERATE TABLE OF DECBS FOR DI SK UTILITY * * *
THI' S MACRO GENERATES A LI NKED TABLE OF DECBS.
THE BUFFER ADDRESSES ARE PLACED I N THE DECB BY XXXXDKOP
USES MACRO WRI TE

* *k *x * * % * * *x * * *x * * * *x * * *x * * *x * * *x * * * *x * * * *

*

*

*

E O T

APPENDI X V. ENTRY AND EXI T CONDI TI ONS

01/31/73 -

ASPLM540-

2.1/ A

THE ENTRY PO NTS ARE LI STED ALPHABETI CALLY BY CSECT NAME.

AOBJDK
APARMS
ASSI ST
BROPS2
CACONS
CBCONS
CCCONS
CDECNS
CFHCNS
CNDTL2
CODTL1
CPCONS
CVCONS
CXCONS
CZCONS
ERRCRS
ESDOPRS
EVALUT
EXECUT
I AMOP1
| BASML
| CMOP2
| DASM2
I NPUT1
LTOPRS
MACFND
MACI NT
MACLEX
MACROL
MACSCN
MCATRM
MCBODY
MCDTRM
MCGNCD
MCGTST
MCSCOP
MCSYSR
MCVSCN
MVEXPND
MOCONL
MPCONO
M CON2
MXERRM
MXI NST
MXMVSR
OoPCOD1
QUTPUT
REMON
RFSYSM5
SCANRS
SDTERM
SYMOPS
UTOPRS
VWKTABL

05098480
04577050
03751000
08566000
08738000
08846000
08992000
09156000
09406000
09584000
09886000
10388000
10586000
10712000
10858000
11044000
11138000
11520000
05102440
12316000
12466000
13414000
14844000
15418000
15678000
46210000
41655000
52520000
42025000
43945000
47620000
47910000
47020000
55805000
47255000
45330000
46655000
46405000
57695000
16346000
16714000
16962000
66130000
60535100
66690000
17070000
17754000
30144000
32790000
18752000
18880100
19196000
19492000
20008100

1

XDDGET(E
XDDTABLE
XXDDFI NI

XXXXDECI

XXXXDECO
XXXXHEXI

XXXXHEXO
XXXXI 0CO
XXXXSNAP
XXXXSPI E

07152012
07151958
07152220
07150020
07150750
07151220
07151670
07164000
07674050
08562505

61
62
63
64
65
66
67
68
72
73

ASPLM540-

2

ASPLM640- 3

**..> CSECT: AOBJDK OBJECT DECK HANDLI NG MODULE

* JOHN R MASHEY - 09/01/71

* THE TWO ENTRI ES OF ACBJDK ARE USED TO LOAD OR PUNCH OBJECT
*. DECKS WHI CH ARE SUBSETS OF NORMAL S/ 360 DECKS. THE TWD ENTRI ES
* MAY OR MAY NOT EXI ST, DEPENDI NG ON FLAGS &$DECK AND &$OBJI N.

* USES DSECTS: ACBJCARD, AVWKTABL

* USES MACRCS: $RETURN, $SAVE

*

**--> | NSUB: AOBDUMP DUMP CURRENT USER CARDI MAGE + + + + + + + + + +
**-.-> | NSUB: AOBHEXCO CONVERT VALUES TO EDI TED HEXADECI MAL + + + + +

**--> ENTRY: AOBJIN LOAD OBJECT DECK

* ENTRY CONDI TI ONS

* R12(RAT) = @ ASSEMBLER CONTROL TABLE (AVWKTABL) .

*, EXI'T CONDI TI ONS

*. AVRADL, AVRADH, AVRELCOC, AVFENTER, AVLOCLOW AVLOCHI H ARE SET UP
* AS THEY WOULD HAVE BEEN HAD THE PROGRAM BEEN ASSEMBLED.

* AVTAGS1 'S FLAGGED W TH AJNLOAD | F SOVE ERROR OCCURRED.

*
*
*

USES MACROS: $PRNT, $RETURN, $SAVE, $SORC, XSNAP

**--> | NSUB: AOBPRI NT PRINT 1 LINE OF OQUTPUT MESSAGE + + + + + + + +

*

> ENTRY: AODECK PUNCH OBJECT DECK FOLLOW NG ASSEMBLY
ACDECK |'S CALLED FOLLOW NG A SUCCESSFUL ASS
| F THE DECK OPTION IS SPECI FI ED, ACDECK |'S CALLED FOLLOW NG
A SUCCESSFULL ASSEMBLY TO PUNCH THE USER PROGRAM OUT | N OBJECT
DECK FORM THE DECK PUNCHED CONTAINS 1 OR MORE TXT CARDS AND
1 END CARD, AND FOLLOAS S/ 360 DECK FORMAT FAI RLY CLOSELY.
NOTE THI'S FACILITY IS VERY PRIM TIVE, AND THE DECKS
PRODUCED CANNOT REALLY BE USED FOR ANYTHI NG BUT | NPUT TO ASSI ST,
SI NCE THERE |'S NEI THER EXTERNAL SYMBOL DI CTI ONARY NOR RELOCATI ON
DI CTI ONARY PRODUC D. ALSO, SINCE THE ENTI RE USER PROGRAM | S
PUNCHED, OBJECT CARDS ARE PRODUCED FOR SPACE CONTAI NI NG ONLY DS
LOCATIONS. | N SOVE CASES, TH S COULD CAUSE HUGE DECKS TO BE
PUNCHED. | F A BETTER SETUP | S DESI RED, ASSEMBLER MODULE UTOPRS
COULD BE CHANGED TO PRODUCE SMALLER DECKS, ALTHOUGH RLD ENTRI ES
WOULD STILL BE DI FFI CULT TO PRODUCE.
NOTE THE MOST LIKELY USE FOR THI'S OPTION | S TO PRODUCE
OBJECT DECKS TO BE USED AS UTI LI TY PROGRAMS FROM RJE TERM NALS.
ENTRY CONDI TI ONS
R12(RAT) = @ ASSEMBLER CONTROL TABLE (AVWKTABL).
USES MACROS: $PNCH, $RETURN, $SAVE

EE I A T B N N N . N N S N T S R T A T T T

NAVES: AQD- - - - -
SPACE 1

* * * * * * * REG STER USA@ Fm AOIG(* * * * * * * * * * * * * * *
R4 = @ CURRENT BLOCK OF CODE TO BE PUNCHED (I NIT = AVRADL). *
R5 = CURRENT LENGTH OF CODE REMAI NING (I NI T =AVRADH AVRADL) .
R6 = BASE REG STER .
R7 = @AOBJCARD : OBJECT CARD QUTPUT | MAGE .
R8 = CURRENT @ OF OODE TO PUNCHED (USER PROGRAM RELATI VE) . .
RO = L' AOTCODE = LENGTH OF NORMAL(ALL BUT LAST) CODE ON CARD *

*

R12(RAT) = @ ASSEMBLER CONTRCL TABLE (AVWKTABL) .

ASPLM640- 4

R13= @ CALLI NG PROGRAM S SAVE AREA, UNCHANGED
R14= | NTERNAL LI NK REG STER
ALL OTHERS ARE UNUSED

* * % % * *x * * *x % *x * *x * * *x * *x * *x * * *x * *x * *x * * *x * *x * *x

* F Xk
* ok Xk

**._.> | NSUB: AODPUNCH PUNCH 1 OBJECT CARD FOR AODECK + + + + + + + +

ASPLM640- 5

**..> CSECT: APARMS USER PARM FI ELD PROCESSI NG CSECT. . .

* SCANS USER PARM FI ELD, SETS VALUES | N AJOBCON DSECT.

* ENTRY CONDI TI ONS

* RO = @OF ACTUAL PARM FI ELD CHARACTER STRI NG

* R10= LENGTH OF PARM FI ELD AT 0(R9).

*. Rl11= ADDRESS OF AJOBCON DUMMY SECTI ON AREA.

*, EXI'T CONDI TlI ONS .
* AJOPARM I N AJOBCON NOW HAS USER PARM FI ELD, RI GHT- PADDED WTH ' ' ..
* VARI OQUS FLAGS | N AJOBCON ARE NOW SET(SEE CODE STARTI NG AT APAJUMP) .
* USES DSECTS: AJOBCON, APCBLK

* USES MACROS: $DBG, $RETURN, $SAVE, $TI RC, APCGN, XDECI

* *NOTE* AS OF 8/12/70, THI S PROGRAM | S MORE GENERAL THAN

* CURRENTLY NEEDED, TO ALLOW FOR FUTURE NEW PARM OPTI ONS.

*

**._> | NSUB: APDECON CONVERT DECI MAL PARM VALUE + + + + + + + + + +

ASPLM640- 6

**..> CSECT: ASSI ST MONI TOR CONTROL PROGRAM FOR THE ASSI ST SYSTEM .
* ENTRY CONDI TI ONS

* Rl= @ PO NTER TO OS LENGTH PARM FI ELD AREA.

*. CALLS AOBJI N, ACDECK, APARMS, EXECUT, MPCONO, REENDA, REI NTA

*. CALLS XXXXFI NI, XXXXI' NI T

* USES DSECTS: AJOBCON, AWAKTABL, ECONTROL

* USES MACROS: $DBG, $PRNT, $RETURN, $SAVE, $SORC, $TI RC

* USES MACROS: ASPAGE, ASPRNT, ASRECL, ASTI ME, ASTI MR

* USES MACROS: FREEMAI N, GETMAI N, STI MER, TTI MER, XCALL, XSNAP, W'L

*

**-.-> | NSUB: ASASPRNT CALLED BY ASPRNT MACRO TO PRI NT A LI NE.

+
+
+
+

+
+
=+
+

**__> | NSUB: ASFLUSH FLUSH CARD RDR UNTI L NEXT COVMAND CARD
**__.> | NSUB: ASMSFINI FREE CURRENT DYNAM C STORAGE AREA + + + + + + + +
**__> |NSUB: ASMBINIT MAIN STORAGE INITIALIZATION + + + + + + + + + +
**__> | NSUB: ASPAGE## PAGE CONTROL CODE FOR PAGE MODE LIMTS + + + +
**._> | NSUB: ASRECL## RECORD LIMT CONTROL + + + + + + + + + + + + +
**__> | NSUB: ASTIMER UPDATE TI MER, PRI NT ELAPSED TI ME, MESSAGE + + + +
*4+.-> | NSUB: ASTIMR## TIM NG SERVI CES | N ASSI ST MAI N PROGRAM + + + +
**__> | NSUB: ASTIMBET SET INTERVAL TIMER ROUTINE + + + + + + + + + +

**--> | NSUB: ASTRP16 COWUTE VALUES FOR BEFORE EXECUTION + + + + + +

ASPLMB40- 7

**..> CSECT: BROPS2 2 ALL BASE REG STER OPERATI ONS - ALL PASS 2 .
*, USES DSECTS: AVWKTABL

*. USES MACROS: $RETURN, $SAVE

*

*--> ENTRY: BRDISP 2 G VEN VALUE&ESDI D, RETURN BASE- DI SPLACEMENT .
ENTRY CONDI TI ONS .
ADDRESS VALUE TO BE DECOVWPOSED TO BASE- DI SPLACEMENT (24 BITS).
ESDI D OF ADDRESS TO BE DECOVPOSED - LOW ORDER BYTE
VALUE IS FROM 1-255. 0 CAN BE USED TO MARK NONUSABLE.
EXI'T CONDI TI ONS

BASE- DI SPLACEMENT FORM OF ADDRESS, | F ADDRESSABLE

0 NORVAL RETURN - ADDRESS WAS DECOVPOSABLE

0 ADDRESSI Bl LI TY ERROR(NO REG OR DI SP TOO LARCE)

RA
RB

RA
RB

*
*
*
*
*
*
*
*
*
*

*--> ENTRY: BRDROP 2 DROP A REG STER FROM USI NG

ENTRY CONDI TI ONS

NUMBER OF REG STER TO BE DROPPED FROM USI NG - = 0-15
EXI T CONDI TI ONS

0 THE REG STER WAS CURRENTLY USABLE

O THE REG STER WAS NOT CURRENTLY | N USE

*
*
*
*
*
*
*

**--> ENTRY: BRINNT 2 I NI TI ALI ZE BASE REG STER TABLES .

*

*--> ENTRY: BRUSIN 2 ENTER A REG STER- VALUE PAIR .

ENTRY CONDI TI ONS

NUMBER OF REQ STER FOR VWHI CH USI NG TO BE SET UP = 0-15
ADDRESS DECLARED | N USI NG FOR G VEN REG STER = 0-2**24-1
ESDI D OF THE USI NG VALUE, I N LOW ORDER BYTE = 1-255

383

*
*
*
*
*
*

ASPLM640- 8

**-.-.> CSECT: CACONS 1-2 PROCESS A- TYPE ADDRESS CONSTANTS.

* USES DSECTS: AVWKTABL
* USES MACROS: $CALL, $RETURN, $SAVE

*

**__> ENTRY: CACONL SCAN ACON, BUT DO NOT ASSEMBLE VAL UE.

* ENTRY CONDI TI ONS

* RA = SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI OUS DEL| METER)
* EXI T CONDI TI ONS

* RA = SCAN PO NTER (ADDRESS OF DELI M TER STOPPI NG SCAN, OR ERROR)
* RB =0 CONSTANT WAS LEGAL, NO ERRORS

* RB = NONZERO ==> | LLEGAL CONSTANT ($ERI NVCN)

* CALLS SCANCO

* ** NOTE** EXPRESSI ON ENDING IN) | NSI DE MULTI PLE CONSTANT
* W LL BE PROCESSED | MPROPERLY, SUCH AS DC A(B+(C), D)

* THE CHARACTERS C) ARE TREATED AS END OF THE ACON.

*

**--> ENTRY: CACON2 1-2 SCAN ACON, ASSEMBLE VALUE
*. RA = SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI QUS DELI I\/ETER)
*. RB = LENGTH-1 OF 1 CONSTANT OF 1 OPERAND TO BE ASSEMBLED

*, EXI'T CONDI TlI ONS

*. RA = SCAN PO NTER (ADDRESS OF DELI M TER STOPPI NG SCAN, OR ERROR)
* RB=0 CONSTANT WAS LEGAL, NO ERRORS

*. RB = NONZERO VALUE - ERROR CODE (FROM EVALUT)

*, = $ERRELOC |F SECTION ID IS A DSECT, WHICH | S NOT ALLOWED.
*. RC = ADDRESS OF PROPERLY ASSEMBLED CONSTANT

*. RD = ESDID OF CONSTANT, |IF =0 ==> ABSOLUTE EXPRESSI ON

*. CALLS EVALUT

*

ASPLMB40- 9

**-.-.> CSECT: CBCONS 1-2 PROCESS BI NARY CONSTANTS.

*
*

*

RA

3882

*
*
*
*
*
*
*
*
*

RA
RB

RA
RC

*
*
*
*
*
*
*
*

USES DSECTS: AVWKTABL

USES MACRCS: $RETURN, $SAVE

*--> ENTRY: CBCONL 1 SCAN B CONSTANT, DO NOT ASSEMBLE.

ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI QUS DELI METER)
EXI T CONDI TI ONS

SCAN PO NTER (ADDRESS OF DELIM TER STOPPI NG SCAN, OR ERROR)
0 CONSTANT WAS LEGAL, NO ERRCRS

NONZERO VALUE FOR ERROR CODE - | NVALI D CONSTANT - ($ERI NVCN)
NUMBER OF BYTES REQUI RED FOR CONSTANT

*--> ENTRY: CBCON2 1-2 ASSEMBLE Bl NARY CONSTANT.

ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI QUS DELI METER)
LENGTH- 1 OF 1 CONSTANT OF 1 OPERAND TO BE ASSEMBLED

EXI T CONDI TI ONS

SCAN PO NTER (ADDRESS OF DELI M TER STOPPI NG SCAN, OR ERROR)
ADDRESS OF PROPERLY ASSEMBLED CONSTANT

ASPLM640- 10

**-.-.> CSECT: CCCONS 1-2 PROCESS CHARACTER TYPE CONSTANTS.

*
*

*

RA

3882

*
*
*
*
*
*
*
*
*

RA
RB

RA
RC

*
*
*
*
*
*
*
*

USES DSECTS: AVWKTABL

USES MACRCS: $RETURN, $SAVE

*--> ENTRY: CCCON1L 1 SCAN, RETURN LENGTH, DO NOT ASSEMBLE.

ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI QUS DELI METER)
EXI T CONDI TI ONS

SCAN PO NTER (ADDRESS OF DELIM TER STOPPI NG SCAN, OR ERROR)
0 CONSTANT WAS LEGAL, NO ERRORS

NONZERO VALUE FOR ERROR CODE - | NVALI D CONSTANT - ($ERI NVCN)
NUMBER OF BYTES REQUI RED FOR CONSTANT

*--> ENTRY: CCCON2 2 SCAN, ASSEMBLE.

ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI QUS DELI METER)
LENGTH- 1 OF 1 CONSTANT OF 1 OPERAND TO BE ASSEMBLED

EXI T CONDI TI ONS

SCAN PO NTER (ADDRESS OF DELI M TER STOPPI NG SCAN, OR ERROR)
ADDRESS OF PROPERLY ASSEMBLED CONSTANT

ASPLM640- 11

**-.-.> CSECT: CDECNS 1-2 PROCESS D&E TYPE CONSTS .

*

**--> ENTRY: CDECN1 1 SCAN, BUT DO NOT ASSEMBLE D OR E TYPE CONSTS.
*. ENTRY CONDI Tl ONS .
* RA = SCAN PO NTER (ADDRESS COF 1ST CHAR AFTER PREVI QUS DELI METER)

* EXI'T CONDI TlI ONS

* RA = SCAN PO NTER (ADDRESS OF DELI M TER STOPPI NG SCAN, OR ERROR)

* RB=0 CONSTANT WAS LEGAL, NO ERRCRS

* RB = NONZERO VALUE FOR ERROR CCDE - | NVALI D CONSTANT - ($ERI NVCN)

* CALLS CDECN2

* USES DSECTS: AVWKTABL

* USES MACROS: $RETURN, $SAVE

*

*--> ENTRY: CDECN2 1-2 SCAN, ASSEMBLE D&E TYPE CONSTANTS.

ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI QUS DELI METER)
LENGTH- 1 OF 1 CONSTANT OF 1 OPERAND TO BE ASSEMBLED

EXI T CONDI TI ONS

SCAN PO NTER (ADDRESS COF DELI M TER STOPPI NG SCAN, COR ERROR)
0 CONSTANT WAS LEGAL, NO ERRORS

NONZERO VALUE FOR ERROR CODE - | NVALI D CONSTANT - ($ERI NVCN)
ADDRESS OF PROPERLY ASSEMBLED CONSTANT

CALLS SDDTRM

USES DSECTS: AVWKTABL

USES MACROS: $CALL, $RETURN, $SAVE

RA

Py}
vy]
oI

*
*
*
*
*
*
*. RB
*
*
*
*
*
*

ASPLM640- 12

**-..> CSECT: CFHCNS 1-2 PROCESS FULLWORD- HALFWORD CONSTANTS .

*

*

*

*
*
*
*
*
*
*
*

RA

RA
RB
RB

£

RB

3882

USES DSECTS: AVWKTABL

USES MACRCS: $RETURN, $SAVE

*--> ENTRY: CFHCNL 1 SCAN CONST, DO NOT ASSEMBLE .

ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI QUS DELI METER)
EXI T CONDI TI ONS

SCAN PO NTER (ADDRESS OF DELIM TER STOPPI NG SCAN, OR ERROR)
0 CONSTANT WAS LEGAL, NO ERRORS

NONZERO VALUE FOR ERROR CODE - | NVALI D CONSTANT - ($ERI NVCN)

*--> ENTRY: CFHCN2 2 ASSEMBLE F OR H CONST .

ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI OUS DELI METER)
LENGTH- 1 OF 1 CONSTANT OF 1 OPERAND TO BE ASSEMBLED

EXI T CONDI TI ONS

SCAN PO NTER (ADDRESS OF DELIM TER STOPPI NG SCAN, OR ERROR)
0 CONSTANT WAS LEGAL, NO ERRORS

NONZERO VALUE FOR ERROR CODE - | NVALI D CONSTANT - ($ERI NVCN)
ADDRESS OF PROPERLY ASSEMBLED CONSTANT

NOTE - THI'S ROUTI NE WLL ASSEMBLE VALUES INTO F OR H
CONSTANTS OF LENGTH 1-8, BUT THE VALUE OF ANY CONSTANT MUST
BE OF SIZE TOFI T INTO 1 FULLMORD, |.E. THE OTHER FULLWORD
MUST EI THER BE ALL 0'S OR ALL 1'S (BI NARY). .

NOTE I T IS POSSI BLE FOR TH S ROUTI NE TO CAUSE A FI XED PT
OVERFLOW WH CH W LL CAUGHT AND LAGGED BY SPIE MONI TOR I N
VAl N PROGRAM MPCONO.

o S T

ASPLM640- 13

*--> CSECT: CNDTL2 2 CONSTANT PROCESSCOR CONTRCL - PASS 2 .

ENTRY CONDI TI ONS

NUVMBER OF CONSTANT CONTROL BLOCKS TO BE PROCESSED

ADDRESS OF FI RST OR ONLY CNCBLOCK TO BE DONE .
CALLS CACON2, CBCON2, CCCON2, CDECNZ2, CFHCN2, CPCON2, CVCON2, CXCON2.
CALLS CZCON2, ERRTAG, QUTPT2, UTPUT2 .
USES DSECTS: AVWKTABL, CNCBLOCK

USES MACROS: $ALI CGR, $CALL, $CGLCC, $GTAD, $RETURN, $SAVE

USES MACROS: $SCPT, $SLCC

RB
RC

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

RA
RB
RB
RB

RA
RB
RB
RC
RE

ASPLM640- 14

*--> CSECT: CODTL1 1 SCAN DUPFAC, TYPE, LENGTH- CALL C ROUTI NES .

ENTRY CONDI TI ONS

SCAN PO NTER TO DUPLI CATI ON FACTOR OR CONSTANT TYPE

0 CONSTANT IS I N A DEFI NE STORAGE STMT

4 CONSTANT IS IN A DC STATEMENT

8 CONSTANT IS A LITERAL - (I.E DUPLFAC "= 0, DECI MALS)
EXI'T CONDI TI ONS

SCAN PO NTER TO DELI M TER FOLLOW NG CONSTANT

0 LEGAL SPECI FI CATI ON OF CONSTANT

NONZERO VALUE - ERROR CODE - | LLEGAL

ADDRESS OF A CONSTANT CONTROL BLOCK

TOTAL LENGTH OF OPERAND, | NCLUDI NG MJULTI PLE OPERANDS, | F ANY .
CALLS CACONL, CBCON1, CCCON1, CDECNL, CFHCNL, CPCON1, CVCON1, CXCONL.
CALLS CZCON1, EVALUT, SDDTRM .
USES DSECTS: AVWKTABL, CONBLK

USES MACRCS: $CALL, $GTAD, $RETURN, $SAVE, $SCCOF, CONG

NOTE RESTRI CTI ONS - DUPLI CATI ON FACTOR AND TOTAL LENGTH MJST *
BOTH BE ABLE TO FIT I N HALFWORD EACH. LENGIH MAY BE GREATER *
THAN 256 FOR A DS, BUT LENGTH ATTRI BUTE WLL NOT BE CORRECT *

ASPLM640- 15

**-.-.> CSECT: CPCONS 1-2 PROCESS PACKED CONSTANTS.

*

*

USES DSECTS: AVWKTABL

*--> ENTRY: CPCON1 1 SCAN, DO NOT ASSEMBLE PACKED CONSTATNT .

RA

RB
RB
RC

*
*
*
*
*. RA
*
*
*
*
*

RA

RA
RC

*
*
*
*
*
*
*
*
*

ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI OUS DELI METER)
EXI T CONDI TI ONS

SCAN PO NTER (ADDRESS OF DELIM TER STOPPI NG SCAN, OR ERROR)
0 CONSTANT WAS LEGAL, NO ERRCRS

NONZERO VALUE FOR ERROR CODE - | NVALI D CONSTANT - ($ERI NVCN)
NUMBER OF BYTES REQUI RED FOR CONSTANT

USES MACROS: $RETURN, $SAVE

*--> ENTRY: CPCON2 1-2 SCAN AND ASSEMBLE P TYPE CONSTANT .

ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI QUS DELI METER)
LENGTH- 1 OF 1 CONSTANT OF 1 OPERAND TO BE ASSEMBLED

EXI T CONDI TI ONS

SCAN PO NTER TO DELI M TER ENDI NG SCAN

ADDRESS OF PROPERLY ASSEMBLED CONSTANT

USES MACROS: $RETURN, $SAVE, $SETRT

ASPLM640- 16

**-.-.> CSECT: CVCONS 1-2 PRCCESS V- TYPE ADCONS .

*

*
*
*
*
*
*
*
*
*
*

RA
RA

RB
RB

RA

RA
RB

RC

*--> ENTRY: CVCON1 1 SCAN V- TYPE CONST, NO ASSEMBLE.

ENTRY CONDI Tl ONS

SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI OUS DELI METER)
EXI'T CONDI TlI ONS

SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI QUS DELI METER)
0 CONSTANT WAS LEGAL, NO ERRCRS

NONZERO VALUE - | LLEGAL SYMBOL ($ERI NVSY)

USES DSECTS: AVWKTABL

USES MACROS: $RETURN, $SAVE

*--> ENTRY: CVCON2 2 SCANSASSEMBLE VCON.

ENTRY CONDI TI ONS

SCAN PO NTER TO FI RST CHARACTER OF VCON.

EXI T CONDI TI ONS

SCAN PO NTER (ADDRESS OF DELI M TER STOPPI NG SCAN, OR ERROR)
0 ==> NO ERRCORS, NONZERO ==> ERROR CODE

NONZERO ERROR CODE ($ERUNRV OR $ERRELCC) .

ADDRESS OF PROPERLY ASSEMBLED CONSTANT

CALLS SYFI ND

CALLS RESYMB (ONLY | F &$SREPL=2 AND EXTRN SYMBCOL USED) .
USES DSECTS: AVWKTABL, SYMSECT

USES MACRCS: $CALL, $RETURN, $SAVE

ASPLM640- 17

**-..> CSECT: CXCONS 1-2 PROCESS HEXADECI MAL CONSTANTS .

*, USES DSECTS: AVWKTABL

*. USES MACROS: $RETURN, $SAVE

*

*--> ENTRY: CXCON1L 1 SCAN HEX CONST, DO NOT ASSEMBLE .

ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI QUS DELI METER)
EXI T CONDI TI ONS

SCAN PO NTER (ADDRESS OF DELIM TER STOPPI NG SCAN, OR ERROR)
0 CONSTANT WAS LEGAL, NO ERRORS

NONZERO VALUE FOR ERROR CODE - | NVALI D CONSTANT - ($ERI NVCN)
NUMBER OF BYTES REQUI RED FOR CONSTANT

RA

3882

*
*
*
*
*
*
*
*
*

**.-> ENTRY: CXCON2 1-2 ASSEMBLE HEX CONSTANT .

* ENTRY CONDI TI ONS

* RA = SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI OUS DELI METER)
*. RB = LENGTH-1 OF 1 CONSTANT OF 1 OPERAND TO BE ASSEMBLED

* EXI T CONDI TI ONS

* RA = SCAN PO NTER (ADDRESS COF DELI M TER STOPPI NG SCAN, OR ERROR)
* RC = ADDRESS OF PROPERLY ASSEMBLED CONSTANT

*

ASPLM640- 18

**..> CSECT: CZCONS 1-2 PROCESS ZONED CONSTS.

*

*

USES DSECTS: AVWKTABL

*--> ENTRY: CZCON1 1 SCAN, BUT DO NOT ASSEMBLE .

RA

RB
RB
RC

*
*
*
*
*. RA
*
*
*
*
*

RA

RA
RC

*
*
*
*
*
*
*
*
*

ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI OUS DELI METER)
EXI T CONDI TI ONS

SCAN PO NTER (ADDRESS OF DELIM TER STOPPI NG SCAN, OR ERROR)
0 CONSTANT WAS LEGAL, NO ERRCRS

NONZERO VALUE FOR ERROR CODE - | NVALI D CONSTANT - ($ERI NVCN)
NUMBER OF BYTES REQUI RED FOR CONSTANT

USES MACROS: $RETURN, $SAVE

*--> ENTRY: CZCON2 1-2 SCAN AND ASSEMBLE Z- TYPE CONSTANT .

ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHAR AFTER PREVI QUS DELI METER)
LENGTH- 1 OF 1 CONSTANT OF 1 OPERAND TO BE ASSEMBLED

EXI T CONDI TI ONS

SCAN PO NTER (ADDRESS OF DELI M TER STOPPI NG SCAN, OR ERROR)
ADDRESS OF PROPERLY ASSEMBLED CONSTANT

USES MACROS: $RETURN, $SAVE, $SETRT

ASPLM640- 19

**-.-.> CSECT: ERRORS 1-2 ERROR FLAGG NG ROUTI NES .

*, ENTRY CONDI TI ONS

*. RA = SCAN PO NTER TO CAUSE OF ERRCR

*. RB = ERROR CODE

*. EXI T CONDI TI ONS

*. RA RB ARE UNCHANGED BY ERRTAG OR ERRLAB

*, USES DSECTS: AVWKTABL, RSBLOCK

*

**--> ENTRY: ERRLAB FLAG ERROR FOR A LABEL. S
*, ENTRY CONDI TI ONS- EXI T CONDI TI ONS - SEE CSECT ERRORS
*, CALLS ERRTAG

* USES MACROS: $CALL, $RETURN, $SAVE

*

**-.-> ENTRY: ERRTAG FLAG ERROR AT SCAN PO NTER POSI TI ON .
*, ENTRY CONDI TI ONS- EXI T CONDI TI ONS - SEE CSECT ERRORS

*. USES MACROS: $RETURN, $SAVE, $SCOF

*

ASPLM640- 20

**..> CSECT: ESDOPRS 1-2 EXTERNAL SYMBCL DI CTlI ONARY&ESDI D OPERATI ONS .
*, THI'S MODULE HANDLES ALL FLAGG NG AND CHECKI NG OF SECTI ON

*. AND EXTERNAL ATTRI BUTES, | NCLUDI NG FLAGE NG SYMBOL TABLE

* ENTRI ES AND MANI PULATI NG LOCATI ON COUNTERS AND SECTI ON | DS.

* USES DSECTS: AVWKTABL, SYSMSECT

*

**--> ENTRY: ESCSEC DECLARE A CONTRCL SECTI ON OR DUMWY SECTI ON.
*. ENTRY CONDI TI ONS

*. RB =0 ==> CSECT

*, = 2 ==> DSECT

*, = 4 ==> START

*. RC = VALUE TO BE USED TO SET LOCATI ON COUNTER(START ONLY, RB=4)

*. EXI T CONDI TI ONS

*, RB = 0 ==> NO ERRORS. ~=0 ==> AN ERROR CODE TO BE SET

*. RB = NONZERO VALUE - ERRCR CODE - ($ERDPCSE)

*. AVCESDID IS INCREMENTED BY 1 OR 2 FOR NEXT VALUE OF REQUI RED TYPE
*. | . E. CSECTS HAVE EVEN VALUES, DSECTS ODD ONES. .
*. LOCATI ON COUNTERS ARE MODI FI ED (AVLOCHI H, AVLOCNTR) .

*. USES MACROS: $ALI GR $AL2, $GLCC, $RETURN, $SAVE, $SLCC

*

**--> ENTRY: ESENX1 ENTRY AND EXTRN STATEMENTS- PASS 1.
*. ENTRY CONDI TI ONS

*. RA = SCAN PO NTER

*. RB = 0 ==> ENTRY

*, = 2 ==> EXTRN

*. EXI T CONDI TI ONS

*. RA = SCAN PO NTER TO BLANK FCLLOW NG OPERAND FI ELD, OR ERROR
*. RB =0 ==> NO ERRORS. "= 0 ==> ERROR CODE TO BE SET

*. RB = NONZERO VALUE - ERROR CODE - ($ERI NVDM $ERI NVSY)

*. ALL LABEL'S IN STMI HAVE SYMSECTS FLAGGED APPROPRI ATELY.
*. CALLS SYENT1

*, USES MACROS: $CALL, $GTAD, $RETURN, $SAVE

*

**.-.> ENTRY: ESENX2 ENTRY AND EXTRN STATEMENTS - PASS 2 .
* CHECKS ENTRY/ EXTRN STATEMENTS FOR CONFLI CTS, ERRORS.
*. ENTRY AND EXI T CONDI TI ONS EXACTLY SAME AS ESENX1

*. EXCEPT EXIT VALUE OF RB MEANS NOTHI NG

* CALLS ERRTAG, SYENT1

* USES MACRCS: $CALL, $GTAD, $RETURN, $SAVE

*

--> ENTRY: ESI NT1 I NI TIALI ZATION . PASS 1 . . .
*, THI' S SECTI ON FOR COVPLETENESS, FUTURE USE. DOES NOTHI NG 8/ 70
*

ASPLM640- 21

*--> CSECT: EVALUT 1-2 CGENERAL EXPRESSI ON EVALUATI ON RCOUTI NE .
ENTRY CONDI TI ONS

RA = SCAN PO NTER (ADDRESS OF 1ST CHARACTER OF EXPRESSI ON)
EXI T CONDI TI ONS
RA = SCAN PO NTER TO DELI M TER STOPPI NG SCAN, OR ERROR
RB = 0 ==> EXPRESSI ON GOOD, = NONZERO VALUE==>ERROR CCDE
RC = VALUE OF EXPRESSION, IF I T WAS GOCD
RD = 0 ==> EXPRESSI ON WAS AN ABSOLUTE EXPRESSI ON
= ESDI D FOR A RELOCATABLE EXPRESSI ON (1-255)
RE = LENGTH ATTRI BUTE - 1 OF EXPRESSI ON.

CALLS SDBCDX, SYFI ND
USES DSECTS: AVWWKTABL, EVCTDSCT, RCODBLK, RSBLOCK, SYMSECT
USES MACROS: $CALL, $GLCC, $RETURN, $SAVE, EVCG

NOTE SEE | BM PLM Y26-3700-0, PP. 45-47. EVALUT SOVEWHAT .
RESEMBLES | EUF7V- EXPRESSI ON EVALUATI ON RCUTI NE. NOTE EVALUT .
HAS 1 LESS STATE SETTI NG SI NCE | EUF7V COND=0 | S UNNEEDED.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ASPLMB40- 22

*--> CSECT: EXECUT 3 | NTERPRETER SECTI ON .

EXECUT PERFORMS ALL 360 | NSTRUCTI ON SI MJULATI ON DURI NG
| NTERPRETI VE EXECUTI ON OF THE USER PROGRAM ALL CONTROL .
VALUES FOR THI S MODULE ARE CONTAI NED I N DSECT ECONTROL, WHI CH.
'S PASSED TO EXECUT BY THE CALLI NG PROGRAM THE | NSTRUCTI ON. .
SET SI MULATED | NCLUDES THE FOLLOW NG
1. STANDARD | NSTRUCTI ON SET
2. DECI MAL | NSTRUCTI ON SET (| F PRESENT ON MACHI NE) .
3. FLOATI NG PO NT | NSTRUCTI ONS (OPTI ONAL) .
4. X- MACRO PSEUDO | NSTRUCTI ONS - XDUWP, XLI MD,
XPNCH, XPRNT, XREAD.
THE PRI VI LEGED OPERATI ONS MAY BE DECODED TO THE PO NT OF
BRANCHI NG TO | NDI VI DUAL | NSTRUCTI ON HANDLERS, BUT THEY ARE
ARE FLAGCED W TH AN 0C2 | NTERRUPT AT PRESENT, AND ARE NOT
| NTERPRETED FURTHER. THE CODE PRESENT | S FOR FUTURE USE. .
THE SVC | NSTRUCTI ON | S CURRENTLY FLAGGED W TH AN 0C2 | F.
USED, BUT CODE EXI STS TO HANDLE ALL SVC CALLS IN A TABLE- .
DRI VEN WAY, USING THE @ OF AN SVC CONTROL TABLE PASSED | N THE.
WORD ECSVCADS | N ECONTROL. AS OF 8/2/70, THERE ARE NOT SVC
ROUTI NES, BUT THE CODE EXI STS FOR FUTURE USE.
GENERAL CODE |'S ALSO PROVI DED FOR ANY ADDI TI ONAL NEW
| NSTRUCTI ONS OR |/ O SI MULATORS BY THE SECTI ON EXCALL, WH CH
ALLOWNS CALLS TO EXTERNAL ROUTI NES (WHI CH WOULD BE USED BY
ANY SVC CALLS, |F THERE ARE ANY).
ENTRY CONDI TI ONS
R10= @ ECONTROL - EXECUTI ON CONTROL BLOCK.
ECONTROL CONTAINS ALL I NI TI AL VALUES FOR REGS, LI M TS, ETC.
EXI T CONDI TI ONS
ECI NTCOCD CONTAI NS | NTERRRUPT CODE, | F PROGRAM | NTERRUPT.
ECFLAGL CONTAI NS SPECI AL COVPLETI ON CCDE, |F ANY.
ECERRAD = ADDRESS OF AN ERCOVPCD ERROR COWVPLETI ON CODE BLOCK .
ECONTRCL CONTAI NS ALL OTHER VALUES NEEDED FOR A COVPLETI ON DUMP. .
USES DSECTS: ECONTROL, ECSTACKD
USES MACROS: $AL2, $ERCGN, $PNCH, $PRNT, $READ, $RETURN, $SAVE
USES MACROS: $SPIE, XDECI, XDECO, XSNAP

3%

RB

RD

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ASPLM640- 23

*--> CSECT: | AMOP1 1 MACHI NE OPERATI ONS - PASS 1 .

THIS 1S 1 OF 2 PASS 1, LEVEL 2 PROGRAMS. | T PERFORMS ALL
PASS 1 MACHI NE | NSTRUCTI ON PROCESSI NG, | NCLUDI NG ALI GNVENT
OF THE LOCATI ON COUNTER, SCANNI NG FOR LI TERAL CONSTANTS,
AND BUI LDI NG AN RCODBLK FOR THE STATEMENT. THE RCODBLK

I NCLUDES THE | NSTRUCTI ON FORVAT TYPE, THE MACHI NE CCDE FOR
THE G VEN | NSTRUCTI ON, MASK (EXTENDED MNEMONI CS), FLAGS
AND ALl GNVENT VALUES NEEDED, THE LENGTH ATTRI BUTE-1 FOR THE
| NSTRUCTI ON, AND THE ADDRESS OF A LI TERAL CONSTANT I N THE
LI TERAL TABLE, IF THERE IS ONE USED.

ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHARACTER OF OPERAND FI ELD)
ADDRESS OF OPCODE CONTRCOL TABLE ENTRY FOR OPCODE USED

EXI T CONDI TI ONS

0 NO ERRCRS WERE ENCOUNTERED

>0 ERRORS WERE FOUND | N STATEMENT

@ RECORD CODE BLOCK(RCODBLK) FOR THE STATEMENT.

THE RCODBLK HAS ALL VALUES FI LLED I N EXCEPT RCLOC(| ARCLOC) .
LENGTH OF CODE - TO BE ADDED AFTER ALI GNMENT DONE

CALLS ERRTAG, LTENT1, SCANEQ

USES DSECTS: AVWWKTABL, OPCCDTB

USES MACROS: $CALL, $CKALN, $GLCC, $LTENT1, $RETURN, $SAVE, $SLOC

ASPLM640- 24

*--> CSECT: | BASML 1 ASSEMBLER INSTRUCTIONS - PASS 1
THIS MODULE IS 1 OF THE 2 PASS 1, LEVEL 2 ROUTI NES OF THE
ASSI ST ASSEMBLER. | T PERFORMS ALL PROCESSI NG FOR ASSEMBLER
I NSTRUCTI ONS DURI NG PASS 1, | NCLUDI NG SCANNI NG, MODI FYI NG
LOCATI ON COUNTERS, AND BUI LDI NG AN RCODBLK FOR THE STMI.
ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHARACTER OF OPERAND FI ELD)
ADDRESS OF OPCODE CONTRCOL TABLE ENTRY FOR OPCODE USED

EXI T CONDI TI ONS

0 NO ERRCRS WERE ENCOUNTERED

>0 ERRORS WERE FOUND | N STATEMENT

ADDRESS OF RECORD CODE BLOCK (RCB)

LENGTH OF CODE - TO BE ADDED AFTER ALI GNMENT DONE

CALLS CCCONL, CODTL1, ERRLAB, ERRTAG, ESCSEC, ESENX1

CALLS EVALUT, LTDWP1, SDBCDX, SDDTRM

USES DSECTS: AVWWKTABL, CNCBLCCK, | BPSECT, OPCODTB, SYMSECT
USES MACROS: $AL2, $ALI GR, $CALL, $CKALN, $GLCC, $RETURN, $SAVE
USES MACROS: $SDEF, $SLCC, | BPRTAB

3%

RD

*
*
*
*
*
*
*
*
*
*. RB
*
*
*
*
*
*
*
*
*

RA
RC
RE

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ASPLMB40- 25

*--> CSECT: | CMOP2 2 MACHI NE OPERATI ONS - PASS 2 .

THIS MODULE IS 1 OF THE 2 PASS 2, LEVEL 2 ROUTINES I N THE

ASSI ST ASSEMBLER. | T PROCESSES ALL MACHI NE | NSTRUCTIONS IN .
THE SECOND PASS, SCANNI NG ALL THE OPERAND FI ELDS AND CREATI NG
THE OBJECT CODE FOR THEM | T ALSO DOES THE SETUP REQUI REED
FOR QUTPT2 TO PRODUCE THE PRI NTED LI STING THI S ROUTI NE HAS
MANY SPECI AL- CASE SECTI ONS WHI CH ARE USED FOR SPEED, AND .
VWHI CH COULD USE LESS SPACE | F CALLS TO THE GENERAL EXPRESSI ON.
EVALUATOR EVALUT WERE USED | NSTEAD.

ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHARACTER OF OPERAND FI ELD)
ADDRESS OF RECORD CODE BLOCK(RCCDBLK) FOR STATEMENT

ADDRESS OF RECORD SOURCE BLOCK(RSBLOCK) FOR STATEMENT

CALLS BRDI SP, ERRTAG, EVALUT, LTGET2, SDBCDX, SDDTRM

CALLS SDBCDX, SYFI ND, QUTPT2, UTPT2

USES MACRCS: $AL2, $CALL, $CGLOC, $RETURN, $SAVE, | CT

RA
RC
RE

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ASPLM640- 26

*--> CSECT: | DASM2 2 ASSEMBLER | NSTRUCTI ONS - PASS 2 .

THIS MODULE IS 1 OF THE 2 PASS 2, LEVEL 2 ROUTINES I N THE

ASSI ST ASSEMBLER. | T PERFORMS ALL PROCESSI NG OF ASSEMBLER

I NSTRUCTI ONS I N THE SECOND PASS. | T PRODUCES SOVE OBJECT
CCDE, AND DOES SETUP FOR PRI NTING MOST OF THE WORK HAS
ALREADY BEEN DONE | N THE CORREPONDI NG PASS 1 MODULE, | BASML.
ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF 1ST CHARACTER OF OPERAND FI ELD)
ADDRESS OF RECORD CODE BLOCK(RCODBLK) FOR STATEMENT

ADDRESS OF RECORD SOURCE BLOCK(RSBLOCK) FOR STATEMENT .
CALLS BRDROP, BRUSI N, CCCON2, CNDTL2, ERRTAG, ESENX2, EVALUT, LTDMP2.
CALLS QUTPTZ, UTPUT2

USES DSECTS: AVWKTABL, RCODBLK, RSBLOCK, SYMSECT

USES MACROS: $AL2, $CALL, $GLOC, $RETURN, $SAVE, $SDEF, $STV

**-.-> | NSUB: | DEVAL EVALUATE RELOCATABLE EXPRESSION + + + + + + + +

**._.> |NSUB: | DREGET = CONVERT REG STER, CHECK VALIDITY + + + + + + +

ASPLMB40- 27

**.-.> CSECT: | NPUT1 1 I NPUT AND MANI PULATI ON OF SOURCE CARDS.

*

**_--> ENTRY: | NCARD CALLED TO CGET CARD AND CREATE RSBLOCK . .

* TH S ENTRY READS 1 STATEMENT (1-3 CARDS), AND SETS UP THE

* RECORD BLOCKS RSBLOCK, AND RSCBLK (I F CONTI NUATI ONS OR

* SEQUENCE NUMBERS ARE USED). |IT IS CALLED DURI NG PASS 1 OF

* THE ASSEMBLY. | F AN ENDFILE | NDI CATI ON | S ENCOUNTERED, | T

* CREATES A PSEUDO ENDCARD, SI NCE THE MAI N PROGRAM OF PASS 1 .
* MOCON1 ONLY STOPS AFTER AN END CARD | S FOUND. AS OF 8/17/70,.
* I NCARD | S THE ONLY ASSEMBLER ENTRY DO NG CARD READI NG

* IN SETTI NG UP THE RSBLOCK, | NCARD CONCATENATES THE SECTI ONS

* OF A CONTI NUED STATEMENT, AND REMOVES BLANKS TO SOVE DEGREE

* FROM THE TRAI LI NG EDGE OF THE STATEMENT. | T ALSO | NSERTS

* THE 3 CHARACTERS BLANK, APOSTROPHE, BLANK AFTER THE LAST .
* NONBLANK CHARACTER | N THE SOURCE STATEMENT. THI S IS CRUCI AL .
*, TO THE PROPER SCANNI NG OF THE SOURCE STATEMENT W THOUT

*. REQUI RI NG LENGTHS TO BE CARRI ED FROM ROUTI NE TO ROUTI NE.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

| F THE MACRO PROCESSOR EXI STS (&MACROS=1), | NCARD .
ALSO HANDLES RECOVERY OF GENERATED STMIS (CREATED BY MEXPND . .
I N THE DYNAM C- H GH AREA) .
| F A MACRO LI BRARY FACI LI TY EXI STS (&$MACSLB=1),
| NCARD CAN BE SW TCHED TO READ FROM I T, | NSTEAD OF $SORC.
EXI T CONDI TI ONS
SCAN PTR TO ERROR, ONLY IF RB #= 0. NO MEANING IF RB = 0.
RB =0 NO ERRORS FOUND | N STATEMENT BY | NCARD
RB = ERROR CODE (NONZERO) OF ERROR. RA HAS SCAN PTR OF IT.
AVSOLAST = @ BLANK | MVEDI ATELY BEFORE ' | N THE 4-BYTE FI ELDWHICH .
| NCARD PLACES AFTER THE SOURCE STMI' TO STOP SCANNI NG OVERRUN. .
USES DSECTS: AVWWKTABL, RSBLOCK, RSCBLK, RSOURCE
USES MACROS: $RETURN, $SAVE, $SORC

RA

**--> | NSUB: | NCRSW SAVE CON SEQNO | NTO RSCBLK + + + + + + + + + +

ASPLM640- 28

**-.-.> CSECT: LTOPRS 1-2 ALL LI TERAL TABLE OPERATI ONS.

*

*--> ENTRY: LTDWP1 1 DUVP LI TERALS ON FI NDI NG LTORG AND END.

*
*
*
*
*. RA
*
*
*
*

*
*
‘.
‘.
‘.
‘.
‘.
* RA
*
*. RA
. RB
*. RC
*
‘.
‘.
.
*
*
‘.
‘.
‘.
‘.
‘.
‘.
‘.
*. RA
“. RC
*-

LTDMP1 IS CALLED BY I BASML TO FI ND LENGTH OF THE CURRENT .
LI TERRAL POOL, AND AVANCE THE CURRENT POOL PTR TO THE NEXT 1..
EXI'T CONDI TlI ONS

TOTAL LENGTH REQUI RED FOR THE LI TERAL BLOCK

CALLS MOSTORP

USES DSECTS: AVWKTABL, LTBASETB, LTLENTRY

USES MACROS: $ALI GN, $ALLOCH, $CALL, $CGLCC, $RETURN, $SAVE

*--> ENTRY: LTDMP2 2 DUVP LI TERALS I N PASS 2 .

LTDMP2 IS CALLED BY | DASM2 DURI NG PASS 2, V\HENEVER A LTG?G .
OR END STMI IS FOUND, TO PRODUCE THE OBJECT CCODE AND LI STI NG .
OF ANY LI TERALS I N THE CURRENT LI TERAL POOL. THE CURRENT
POCL BASE PO NTER IS ADVANCED TO THE NEXT LTBASETB.

CALLS CNDTL2

USES DSECTS: AVWKTABL, LTBASETB, LTLENTRY

USES MACROS: $CALL, $GLCC, $RETURN, $SAVE, $SLOC

*--> ENTRY: LTEND1 1 CLEANUP AFTER PHASE 1 PREPARE FOR PHASE 2 .

THI'S ENTRY SETS UP FOR ASSEMBLER PASS 2 LI TERAL PROCESSI NG
USES MACRCS: $RETURN, $SAVE

*--> ENTRY: LTENT1 1 ENTER A LI TERAL | NTO THE TABLE.

THI'S ENTRY IS CALLED DURI NG PASS 1 TO SCAN A LI TERAL BY .
| AMOP1. THE LITERAL IS SCANNED BY CODTL1, AND IT IS ENTERED .
IF IT 1S NOT ALREADY PRESENT. NOTE THAT NO DUPLI CATES
ARE EVER KEPT I N THE SAME POOL, EVEN FOR A- TYPE CONSTANTS
W TH LOCATI ON COUNTER REFERENCES.

ENTRY CONDI TI ONS

SCAN PO NTER (ADDRESS OF = I N LI TERAL)

EXI'T CONDI TI ONS

SCAN PO NTER (ADDRESS OF ERROR OR DELI METER)

O IF LITERAL LEGAL, ERROR CODE OTHER W SE

ADDRESS COF LI TERAL TABLE ENTRY

CALLS CODTL1, MOSTOR

USES DSECTS: AVWKTABL, CNCBLCOCK, LTBASETB, LTLENTRY, RSBLOCK
USES MACROS: $ALLOCH, $CALL, $RETURN, $SAVE, $SCPT

*--> ENTRY: LTGET2 2 GET ADDRESS OF LI TERAL | N ASSEMBLY.

LTGET2 IS CALLED BY ICMOP2 EACH TIME A LITERAL IS FOUND IN .
SCANNI NG MACHI NE | NST OPERANDS DURI NG PASS 2. I T RETURNS THE .
ATTRI BUTES OF THE LI TERAL, | NCLUDI NG THE USER PROGRAM @ FOR
THE LI TERAL, THE SECTION ID OF THE LI TERAL, AND THE LENGIH
ATTRI BUTE OF THE LI TERAL. | CMOP2 SUPPLI ES A PO NTER TO THE
LTLENTRY OF THE LI TERAL, WH CH HAD BEEN SAVED | N THE
STATEMENT' S RCODBLK .

ENTRY CONDI TI ONS

SCAN PO NTER TO 1ST CHAR OF LI TERAL =

@ LI TERAL TABLE ENTRY I N LI TERAL TABLE(WAS SAVED | N RCB)
EXI'T CONDI TlI ONS

* ok X X 3k X X

EE I T

ASPLM640- 29

SCAN PO NTER TO CHARACTER AFTER LI TERAL
ESDI D OF CSECT IN WHI CH LI TERAL EXI STS
ADDRESS OF LI TERAL (PROGRAM ADDRESS- FOR LI STI NG, ETC) .
| MPLI ED LENGTH- 1 OF THE LI TERAL(LOW ORDER BYTE, OTHERS | NDTR) .
USES DSECTS: AVWKTABL, LTBASETB, LTLENTRY
USES MACRCS: $RETURN, $SAVE

5883

*--> ENTRY: LTI NT1 1 I NI TIALI ZE LI TERAL TABLE | F NEEDED. . .
ALLCCATES AND ZERCS 1ST LI TERAL POOL BASE TABLE. INITS 1ST AND
CURRENT BLOCK PO NTERS TO 1ST LTBASETB.

CALLS MOSTOP

USES DSECTS: AVWKTABL, LTBASETB

USES MACROS: $ALLOCH, $SRETURN, $SAVE

ASPLM640- 30

*--> CSECT: MACFND THI'S ROUTI NE | S GENERAL SEARCH PROCEDURE

VWHI CH CAN SCAN THE MACRO LI BRARY, GLOBAL AND LOCAL

DI CTI ONARI ES AND THE SYMBOLI C PARAMETER LI ST. THE CALLI NG
ROUTI NE DETERM NES WHI CH LI BRARY BY PLACI NG THE APPROPRI ATE
PO NTER I N RC.

ENTRY CONDI TI ONS
RC = @OF FIRST ENTRY OF LI ST TO BE SEARCHED

EXI T CONDI TI ONS

0 IF ENTRY | S FOUND

$ERUNDEF | F ENTRY | S NOT FOUND

@OF ENTRY | F FOUND ELSE @ OF FI NAL ENTRY | F NOT FOUND
USES MACRCS: $SAVE, $RETURN

USES DSECTS: MACLI B, AVWKTABL

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
X *
. REG STER USAGE A
. RC- MACLI B BASE REG STER, LIST TO BE SEARCHED A
. RAT- MAIN TABLE DSECT USI NG A
. RB- RETURN REG STER A

A

A

A

*

*

NAVES=MACFN___

*
*
*
*
*
*
*
*
*
*
*
*
*, RC
*
*
*
*
*
*
*
*
*
*
*
*

EE R I R R R I O R R I O R I R S R R R R R R R R I O O

ASPLM640- 31

*--> CSECT: MACI NT THI'S ROUTINE | S CALLED I N I NI TI ALI ZATI ON
PHASE OF ASSIST. | T PERFORMS CERTAI N REQUI RED STORAGE
ALLCCATI ON AND SETS PO NTERS AVGEN1CD AND AVGEN2CD.
OVERFLOW MESSAGE FOR GENERAL USE |'S ALSO CREATED.

G M CAMPBELL - SUMMER - 1972

USES DSECTS: AVWKTABL

REG STER USAGE:
WORK REGS: RA, RB

*
*
*
*
*
*
*
*
*
S
S
*
*

*
*
*
*
*
*.
*, USES MACRCS: $ALLCCL, $SAVE, $RETURN, $CALL
*
*
*
*
*
*

EE R I R R I I O R R R I R I R R R I R I R R R R O O

**--> | NSUB: MCI NI TOV OVERFLOW RQUTINE + + + + + + + + + + + + +S

ASPLM640- 32

*--> CSECT: MACLEX THI' S PROCEDURE SCANS A MCRO STATEMENT AND *
CONVERTS I T INTO BSU S. ALSO CHECKS FOR SUCH ERRORS AS TWO *
TERM5S OR TWO OPERATORS IN A ROW WHERE NECESSARY | T | NSERTS*
CATENATI ON OPERATORS WHERE CATENATION IS IMPLICIT

ENTRY CONDI TI ONS
@ OF FI RST CHARACTER OF EXPRESSI ON
@ ON NEXT AVAI LABLE BSU | N WORKSPACE

3%

EXI T CONDI TI ONS

RA = @ OF DELI M PAST EXPRESSI ON | F NO ERROR
= @OF ERROR | F ERROR PRESENT

RB = 0 I F OKAY
= $ERMSSGE | F ERROR

RC = @ OF NEXT AVAI LABLE SPACE FOR BSU

CALLS MCGTST, MCDTRM SDBCDX, MCSYSR, MCATRM MCGTST
USES DSECTS: AVWKTABL, MCBSU, MCPARENT, MCGLBDCT, MCLCLDPV
USES MACROS: $SAVE, $RETURN, $ALLOCL, $SCOF, $SCPT, $CALL, $SETRT

REG STER USAGE

WORK REGS: RO, R1, R2, RY, RZ, RB, RC, RE
USED FOR TRT: R1, R2

RW BASE REG FOR BSU

R13 BASE REG FOR THI S CSECT

RAT- BASE REGQ STER FOR MAIN TABLE
RX- UNUSED
RD- ?

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

X—>>>>>>>>>******X—***X—******

% % * % *x % *x * *x * % *x * *x * *x * * *x * *x * * *x * *x * *x * *x * * *x *

**__> | NSUB: MCLXBMP BUWP PONTER + + + + + + + + + + + + + + +S

*%._.> | NSUB: MCLXCATI ROUTI NE TO | NSERT CONCATI NATION + + + + + + +A

ASPLM640- 33

*--> CSECT: MACROL CALLED BY MAI N CONTROL WHEN MACRO OPCCDE
ENCOUNTERED. AT PRESENT (DEC 31, 1971) ONLY MACRO
DEFI NI TI ONS ARE ALLOWED, NO CONDI TI ONAL ASSEMBLY. MACROL
CREATES ENTRY I N MACLI B FOR FUTURE EXPANSI ON BY MEXPND
ENTRY CONDI Tl ONS
RA = SCAN PO NTER @ OF OPERAND
RC = @ OPCODTB ENTRY FOR OPERATI ON

*

*

*

*

*

*

*

*

*. CALLS MACSCN, QUTPT2, MACFND, ERRTAG, ERRLAB, MCVSCN, MCSCOP,
*. MCBODY

* USES MACROS: $SAVE, $RETURN, $CALL, $ALLOCL

* USES DSECTS: RSBLOCK, OPCODTB, AVWAKTABL, MACLI B, MCPARENT
*

*

*

*

*

*

*

REG STER USAGE:
WORK REGS: RO, R1, R2, RA, RB, RD, RE
BASE REGS: RAT, RW RX, RY, R13, RC
UNUSED: RZ

mmmmm*************

EE R R R R R R I R I I O I R R R R I I R R I

**__> | NSUB: MACRORD MACRO READER + + + + + + + + + + + + + + +S

ASPLM640- 34

**..> CSECT: MACSCN SCANS MACRO | NSTRUCTI ON STATEMENT. |DENTIFIES *
* LABEL, OPCODE, OPERAND AND COMMENT (IF ANY) FIELDS. *
. LOCATI ON OF EACH FI ELD STORED I N AVMFLD_. LENGTH OF EACH *
. FI ELD STORED IN AVMFLDL_. TYPE OF EACH FI ELD PLACED IN *
. AVMFLDT_. FIELDS ARE SET TO ZERO | F NOT PRESENT. *
* AVMFLDT1 CONTAINS '& |F VAR ABLE SYMBOL AND '.' |F SEQUENCE*
* SYMBOL ELSE ZERO. AVMFLDT2 CONTAINS '|' |F OPCODE IS *
. SUSPECTED MACRO | NSTRUCTI ON, ' M | F MACRO OPCCDE (Al F, *
. AGO, SETA, ETC), 'O |F OPCODE |'S REGULAR ASSEMBLER OR *
. MACHI NE | NSTRUCI ON AND X' 00' | F ANYTHI NG ELSE. *
* SCANS NON STND CONTI NUATI ON FI LDS AND PLACES VALUES I N *
* AVMFLD5 THRU AVMVFLDS8 *
* *
*, ENTRY CONDI TI ONS *
. RA = @OF FIRST CAHARACTER OF STATEMENT *
* EXI T CONDI TI ONS *
* RA = SAME AS ENTRY CONDI TI ONS *
. RB = 4 | F COMVENT STATEMENT, 8 |F MACRO COMMENT, ELSE ZERO *
. RC = @OF OPCODTB ENTRY | F OPCODE = M OR O .
* *
* USES MACROS: $CALL, $SAVE, $RETURN, $SETRT *
* USES DSECTS: AVWKTABL, OPCODTB *
. CALLS ERRTAG, MCATRM OPFI ND S
*. NAMES: MAG ---- OR MC------ S
. BASE REGS: RL3, RAT, RX, RC s*
, WORK REGS: R1, R2, RA, RB, RW RZ s
*.***
**..> | NSUB: MACSCBLN SCAN FOR NON-BLANK CHAR + + + + + + + + +S
**..> | NSUB: MACSCHEK CHECK FOR NON-STD COND CARD + + + + + + +S
**..> | NSUB: MACSCMMT SCAN COMVENT FIELD + + + + + + + + + + + +S
**..> | NSUB: MACSCOPR FIND AND SCAN OPERAND + + + + + + + + + ++S

**..> | NSUB: MACSCSTR SCAN ARBI TRARY STRING + + + + + + + + + +S

ASPLM641- 35

*..> CSECT: MCATRM THI 'S ROUTI NE SCANS A TERM AND DETERM NES
WHETHER I T IS A VALID ATTRIBUTE, IEI', K, L', N, S ORT
THE LENGTH (L'), SCALE (S') AND INTEGER (I') ATTRI BUTES ARE
NOT | MPLEMENTED AND ARE SO FLAGGED.

ENTRY CONDI TI ONS
RA = @CF FIRST CHAR OF TERM

EXI T CONDI TI ONS

RA = @OF DELIM PAST QUOTE | F VALI D ATTRI BUTE ELSE SAME AS
RB = 0 | F ATTRI BUTE

= -4 | F NOT ATTRI BUTE

= $ERMESSAGE | F NOT | MPLEMENTED
RC = TYPE OF ATTRI BUTE

USES MACROS: $SAVE, $RETURN
USES DSECTS: AVWKTABL

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* ENTRY. *
* *
* *
* *
* *
* *
* *
* *
* *
* *

EE R I R I I I O R I I R I I R R R R R R R I R R I O

. RB, RE, RA-

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**..> | NSUB:
**--> | NSUB:
**..> | NSUB:
**--> | NSUB:
**--> | NSUB:
**..> | NSUB:
**--> | NSUB:
**..> | NSUB:

**--> | NSUB:

*.-.> CSECT:
CALLED FORM MACROL AFTRR PROTOTYPE STATEMENT PROCESSED.

I NI TI ALI ZES LOCAL DI CTI ONARY FOR CURRENT DEFI NI TI ON.
PROCESSES EACH STATEMENT TILL MEND STATEMENT ENCOUNTERED.
TERM NATES AND RETURNS AT THAT PO NT

I N OPEN- CODE MCDE, ($MCOCFL1 ON I N MCLBFL®2),
MCBODY ONLY PROCESSES STMI | N RSBLOCK
|F AVPRSAVE IS SET I N AVPRINTL1, IT CALL MXWSR
TO SAVE STMI IN HIGH AREA, ELSE IT PRINTS I T | MVEDI ATELY
ENTRY CONDI TI ONS
RC = @ OF MACLI B ENTRY OF CURRENT MACRO DEFI NI TI ON

USES MACROS: $SAVE, $RETURN, $CALL, $ALLCOCL, $ALLOCH, $SCCF,
USES DSECTS: AVWWKTABL, MACLI B, MCLCLDPV, OPCODTB, RSBLOCK, MCBSU,

CALLS | NCARD, ERRTAG, MACSCN, ERRLAB, MCVSCN, MACFND, SDDTRM

REG STER USA(E khkkkhhkkkhkhkhkkkhhkkkhkhkhkrkhhkxkhxx
. R13- BASE REAQ STER AND SAVEAREA PO NTER

. RAT- MVAI N TABLE DSECT USI NG

. RX- MACLI B DSECT USI NG

. RY- LOCAL DI CTI ONARY DSECT Ul NG

. RZ- OPCCDE TABLE DSECT USI NG

WORK REG STERS

.R1,R2 USED IN TRT" S

. RET- RETURN REG STER USED FOR | NSUBS

* *x % % * *x *x * *x * *x * *x * * *x * *x * *x * * *x * *x * *x * * *x * *x * *x

ASPLM641- 36

MCBODY PROCESSES THE BODY OF MACRO DEFI NI Tl ON.

$SETRT
MCSEQ, MCGLBDCT, MCOPQUAD

MCSYSR, MACLEX, MCGTST, QUTPT2, MCGNCD

X‘>>>>>>>>>X‘*X—*************X—***

MCBDBVP BUMPS BSU PONTER + + + + + + + + + + + + +A
MCBDCATI ~ CREATE CONCOT BSU+ + + + + + + + + + + + + + +A
MCBDFLD CREATES A PRINT BSU+ + + + + + + + + + + + + + +A
MCBDPR PRINT STATEMENTS + + + + + + + + + + + + + + +A
MCBDSCAN SCANS STATEMENTS IN A MOCOR DEFINITION + + + + +A
MCBDSCFN ~ LOOKS FOR FIELDS + + + + + + + + + + + + + +A
MCBO1 CHECK LCLX, BLX FOR LABEL, OPCCDE + + + + + + J
MCB02 OBTAIN DI MENSI ON OF GBLX OR LCLX STMI + + + + J

MCB03: CHECK DI MENSI ON SI ZE FOR GBLX, LCLX+ + + + + + + + J

ASPLM641- 37

*--> CSECT: MCDTRM DECI MAL CONSTANT CONVERSI ON. MCDTRM DECI DES
SCAN PO NTER |'S PO NTI NG AT LEGAL DECI AMAL TERM AND | F SO,
CONVERTS TO BI NARY FORM HANDLES VALUES UP TO 2**31-1

ENTRY CONDI Tl ONS
RA = @CF FIRST CHAR OF TERM

EXI T CONDI TI ONS

@ OF DELI M TER BEYOND CONSTANT
SAME AS ENTRY | F ERROR

0 I F CONSTANT WAS LEGAL

$ER MSSGE | F | LLEGAL TERM
VALUE OF CONSTANT, 0 TO 2**31-1

&

*
*
*
*
*
*
*
*
*
*
*
*
*
*
USES DSECTS: AVWKTABL *
. USES MACROS: $SAVE, $RETURN *
. REG STER USAGE A
.R12 -BASE REG A
. RAT- MVAI N TABLE DSECT USI NG A
. RD- SCAN PO NTER A

A

A

A

*

. NAVES=MCD

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

% % * % *x % *x * *x * % *x * *x * *x * * *x * *x * * *x * *x * *x * *x * * *x *

ASPLM641- 38

**..> CSECT: MOGNCD CONVERTS STRING OF BSU S TO | NTERNAL CCDE *
* IN ONE-OP FORM ONE- OPS ARE QUADRUPLES W TH OPRTR, TV *
* OPRNDS AND RESULT FIELD. ADDRESS OF CURRENT GENERATED | NST*
* IS IN AVMCRINS. GEERATED CODE |'S POINTED TO BY MCCODLNK ~ *
* FIELD IN MACLIB. BSU STRING LOCATED | N AVMARKL *
* *
* ENTRY CONDI TI ONS *
* RC = @ OF CURRENT MACLIB ENTRY *
* *
* USES MACROS: $CALL, $SAVE, $RETURN, $SCOF, $SCPT, $ALLOCL, $ALLOCH*
* USES DSECTS: AVWKTABL, MCBSU, MCBSTRVS, MCBOPRST, MCOPQUAD, *
* MACLI B, MCSEQ *
* CALLS MACFND, ERRTAG *
* *
* REG STER USAGE: s
* WORK REGS: RO, RL, RA, RB, RC, RE S
* TRT BYTE REG R2 S
* RW - BASE REG FOR BSU s
* RX - BASE REG FOR OPRND STACK s
* RY - BASE REG FOR OPRTR STACK s
* RZ - BASE REG FOR ONE- OP ENTRY S
* RAT - BASE REG FOR MAI N TABLE S
* RL - BASE REG FOR MACLI B s
* RD - UNUSED s
* s
*. * * *x % * *x * * *x * * *x * * *x *x * * *x * * *x * * *x * * * *x * * *x * * *x
**--> | NSUB: MOGNALLO ALLOCATE LOWCORE + + + + + + + + + + + 45
**--> | NSUB: MCWTRVB CREATE ONE BINARY ONE-COP + + + + + + + + +S

**__> | NSUB: MCSEQSCN ENTER SEQ SYMBOL IN DICT + + + + + + + + +S

ASPLM641- 39

*--> CSECT: MCGTST TH' S ROUTI NE TAKES A STRI NG AS DELI NEATED BY
BEG NNI NG AND END PO NTERS, OBTAI NS STORAGE DYNAM CALLY AND
MOVES THE STING | F I NSIDE QUOTES DOUBLE QUOTES W LL BE
CRUNCHED TO ONE QUOTE

ENTRY CONDI TI ONS
@ OF FI RST CAHRACTER OF STRI NG
@ OF DELIM TER PAST STRI NG

Py
vy]
11

EXI T CONDI TI ONS

@ OF DELI M TER PAST STRI NG
@ OF STRING I N NEW STORAGE
LENGTH OF STRI NG

g8

USES MACRCS: $SAVE, $RETURN, $ALLOCL
USES DSECTS: AVWKTABL

REG STER USAGE
RAT- MAI N TABLE USI NG
RA, RB, RC, RD- AS I N ENTR/ EXI T CONDI TI ONS
RE, R1, R3- WORK REG STERS

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* A
* A
* A
* A
k% *x * * *x * * *x * % *x * % *x *x * * *x * * *x * * *x * * *x * * * * * * * *

ASPLM641- 40

*--> CSECT: MCSCOP THI' S ROUTI NE SCANS A MACRO | NSTRUCTI ON *
OPERAND. THE OPERAND MUST CONFORM TO A STANDARD VALUE AS *
LAID DOMWN I N SECTI ON 8 OF | BM GC28-2514 *
*
*

ENTRY CONDI T1 ONS
AVMBYTELl: FLAG $MSBLI ST EXPECTED SET | F ALREADY | NSI DE SUBLI SS

*
EXI T CONDI TI ONS *
DELI M PAST OPRND | F STND VALUE ELSE PO NTS AT ERROR *
0 | F STANDARD VALUE ELSE $ER MESSAGE *
LENGTH OF OPERAND | F OKAY *
TYPE OF OPERAND. | N THI'S CASE TYPE WLL BE ONE OF *
'O (NULL), 'N (SELF-DEFINING TERM) OR'U (ALL OTHERS) *
CAN BE 'S' AFTER SCANNING (1ST SUBPOPERAND S
*
S
*
*
*
*
*

5883

RE = VALUE OF SELF DEFI NI NG TERM
AVMBYTELl: FLAG $M NQUOT HAS | NDETERM NATE VALUE.
USES MACROS: $SAVE, $RETURN, $SETRT, $CALL
USES DSECTS: AVWKTABL
CALLS SDBCDX

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

KR S I R R I b S S I R S O S R R S I

*%._.> | NSUB: MCSET# MODI FY TRT TABLE AWIZTAB + + + + + + + + + + S

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ASPLM641- 41

*--> CSECT: MCSYSR SCANS SUSPECTED VARI ABLE SYMBOL FOR LEGALITY. *
| F VARI ABLE SYMBOL THEN PLACES | N AVMSYMBL. THEN SEARCHES *
GLOBAL, LOCAL AND SYMBOLI C PARAMETER DI CTI ONARI ES FOR SYMBOL*

ENTRY CONDI Tl ONS
= @OF FI RST CHARACTER OF SYMBCL

£

EXI T CONDI TI ONS

@ OF DELIM TER PAST VARI ABLE SYMBOL | F OKAY

SAME AS ENTRY I F NOT VARI ABLE SYMBOL OR | F NOT FOUND
$ERUNDEF | F SYMBOL |'S NOT FOUND

0O IF SYMBOL IS FOUND I N ONE OF THE DI CTI ONARI ES
SET TO -4 IF RA DCES NOT PO NT AT VARI ABLE SYMBOL
PO NTER TO SYMBCOL ENTRY | F FOUND

$GLOBAL | F SYMBOL PRESENT | N GLOBAL DI CTlI ONARY
$LOCAL | F SYMBOL FOUND | N LOCAL Di CTI ONARY
$SYMPAR | F SYMBOL | S SYMBOLI C PARAMETER

$SYSTEM | F SYMBOL | S SYTEM VARI ABLE

88 &8 2

USES MACROS: $CALL, $SAVE, $RETURN
USES DSECTS: MCGLBDCT, MACLI B, AVWKTABL
CALLS MCVSCN, MACFND

:REG STER USAE kkkkkkkhkhkhkkhkkkkk*k

. R13 -BASE REG STER AND SAVEAREA PO NTER
. RG- BASE REG STER FOR GLOBAL DSECT

. RX- BASE REG SER FOR MACRO DI CTI ONARY

 NAMES=MCSY

>(->>>>>>>>>(->(->(—>(->(->(->(->(->(->(->(->(->(->(->(->(->(->(—>(—

* * *x % * *x * * *x * % *x * * * *x * * *x * * *x * * *x * * * * * * * * *

ASPLMB41- 42

*--> CSECT: MCVSCN THI'S ROUTI NE SCANS A STRI NG AND CHECKS
FOR A LEGAL VARI ABLE SYMBCL. | F OKAY, SYMBOL | S MOVED | NTO
AVMSYMBL | N AVWAKKTABL WHERE | T W LL BE UTI LI ZED | N SEARCHES.

ENTRY CONDI Tl ONS
RA = @OF FI RST CHARACTER OF STRI NG

EXI T CONDI TI ONS

@ OF DELIM TER PAST SYMBCOL | F LEGAL
SAME AS ENTRY | F NOT VARI ABLE SYMBCL
0 IF OKAY, <0 IF NOT VARI ABLE SYMBQO.,
$ER MESSAGE | F | LLEGAL SYMBCOL

USES MACRCS: $SAVE, $RETURN

USES DSECTS: AVWKTABL

*
*
*
*
*
*
*
*
*
*
*
*
*
*
. *
. REG STER USAGE A
. RAT- MAI N TABLE DSECT USI NG A
.R1,R2 USED IN TRT" S A
.RB- SET AS IN EXIT CONDI TI ONS ABOVE A

A

A

A

*

NAMES=MOVS

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

EE R I R I R I I R R R R R I R I I I R R I I R

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ko>
*x_ >
ko>
*x_ >
*x__>

STORAGE FROM LOW DYNAM C AREA FOR STANDARD SAVE AREA AND

*--> CSECT: MEXPND

ASPLM641- 43

EXPANDS MACRO DEFI NI TI ON. RECURSI VE. ACQUI RES

LOCAL VARI ABLES.

STATEMENTS | N H GH STORAGE.

RELEASES STORAGE ON EXIT.
AVGENLICD PO NTS TO FI RST BYTE

AFTER FI RST STATEMENT.
STATEMENT GENERATED

USES MACROCS:

USES DSECTS: MACLI B, MCGLBDCT, MCOPQUAD, MCPARCPR, MCPARSUB
AWWKTABL, MXPNTSAV, MCPARENT, RSBLOCK

AVGENLCD PO NTS TO 1ST BYTE OF LAST

PUTS GENERATED

$MALLOCL, $MALLOCH, $CALL, $SAVE, $RETURN,

$AL2

CALLS ERRTAG MCSCOP, MXMVSR, MACSCN, MACFND, MXMVSR, MXERRM

| NSUB:

I NSUB:

| NSUB:

I NSUB:

I NSUB:

ERRTAG, MEXPND, DECTRM

MXPNOSYM

MXPNRDR

MXPNSBSC

MXPOPKPR

MXPOPSCN

+

+

+

+

DETERM NS | F

+

+

+

+

+

+

+

+

+

+

+

+

STRING | S ORDI NARY

+

+

+

+

+

+

+

+

+

+

+

+

+ o+

+ +

+

+

* * % % * *x *x % *x % *x * *x * * *x * *x * *x *x * *x * *x * *x * * * * *x * *x

+ + + +

+

+

+

+

L I S R N T T I

+S

+S

+S

+S

+S

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ASPLMb41- 44

*--> CSECT: MOCONL 1 MAI N CONTROL - ASSEMBLER PASS 1 .

MOCON1 PROVI DES OVERALL CONTROL FOR PASS 1 OF THE ASSI ST
ASSEMBLER, AND SUPERVI SES OR PERFORMS THE FOLLOW NG
READI NG | NPUT CARDS, CREATI NG RECORD BLOCKS (| NCARD) .
SCANNI NG LABELS, ENTERI NG THEM I N SYMBCOL TABLE(SYENT1).
SCANNI NG CARD FOR THE OPCODE, |F ANY.

FI NDI NG OPCCDE | N OPCODE TABLE (OPFI ND) .

SCANNI NG FOR CPERAND FI ELD, SAVI NG SCAN PO NTER.

2ND LEVEL | NSTRUCTI ON PROCESSI NG (| AMOPL, | BASML) .
DEFI NI NG ATTRI BUTES, VALUE OF LABEL, |F REQUI RED.
UPDATI NG LOCATI ON COUNTER TO NEXT LOCATI ON.

STORI NG RECORD BLOCKS FOR STMI (UTPUT1) .

COoNoOR~WNE

NOTE: PRI NT CONTROL/ COMMENTS STMIS ARE PROCESSED COMPLETELY
DURI NG PASS 1 AND NOT SAVED, |F POSSI BLE.

CALLS ERRLAB, ERRTAG, | AMOP1, | BASML, | NCARD, OPFI ND, SYENT1, UTPUTL.
CALLS QUTPT2

USES DSECTS: AVWKTABL, OPCODTB, RCODBLK, RSBLOCK

USES MACROS: $CALL, $CGLCC, $GTAD, $PRNT, $RETURN, $SAVE

USES MACROS: $SCOF, $SDEF, $SLOC

CALLS ERRLAB, ERRTAG, | AMOPL, | BASML, | NCARD, OPFI ND, SYENT1

**--> | NSUB: MOOPAMPC CHECK STATEMENT FOR SET VARI ABLE SUBSTI TUTION *J

**-.-.> ENTRY: MOSTOP CALLED | F DI SASTROUS ERRCR OCCURS I N PASS 1 .

*

RESTORES CONDI TI ONS FOR MOCON1, NOTE OVERFLOW OCCURRENCE.
ENDS EXECUTI ON FOR PASS 1, FLAGE NG PROGRAM NONEXECUTABLE.

ASPLM641- 45

**..> CSECT: MPCONO 0 MAI N PROGRAM CONTROL- I NI T, SET UP TABLES, ETC. .
* MPCONO | NI TI ALI ZES AVWKTABL DSECT VALUES FOR WHOLE ASSEMBLY, .
* SETS A $SPI E TO | NTERCEPT SOMVE TYPES COF | NTERRUPTS, SETS THE .
* PROGRAM AMSK TO ONLY HAVE FI XED- OVERFLOW | NTRPTS, AND CALLS

* ALL THE SUBROUTI NES REQUI RED FOR AN ASSEMBLY I N A TABLE- .
* DRI VEN MANNER, USI NG A LI ST OF PO NTERS TO ADDRESS CONSTNATS. .
* AFTER THE ASSEMBLY | S COVPLETED, | T PRI NTS VARI OQUS STATI STI CS.
* AND THEN RETURNS CONTROL TO THE ASSI ST MONI TOR. NOTE THAT

*. MPCONO IS THE ONLY CSECT I N THE ASSEMBLER VWHI CH ACTUALLY

*. REFERS TO AJOBCON, ALTHOUGH OTHERS USE EQU FLAGS FROM I T.

* ENTRY CONDI TI ONS

* R12(RAT) = @ VWKTABL CSECT, | N TIALI ZED BY ASSI ST CONTRCL PROG

* AVAJOBPT, AVECONPT HAVE BEEN | NI TI ALI ZED | F NEEDED BY ASSI ST.

* CALLS ESI NT1, LTI NT1, OPI NI T, SYI NT1, UTI NT1, QUI NT1, MOCON1

* CALLS LTENDL1, UTEND1, BRI NI T, MTCON2

* CALLS QOUENDZ2, SYEND2, UTEND2

* USES DSECTS: AVWKTABL

* USES MACROS: $AL2, $CALL, $PRNT, $RETURN, $SAVE, $SPIE

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

ASPLM641- 46

*--> CSECT: MrCoN2 2 MAI N CONTROL - ASSEMBLER PASS 2 .

MICON2 |'S THE CONTROL PROGRAM FOR THE 2ND PASS OF THE ASSI ST .
OF THE ASSI ST ASSEMBLER. I T IS RELATI VELY SMALL, SI NCE
MOST OF THE WORK HAS BEEN DONE I N PASS 1. I T PERFORM5 OR
SUPERVI SES THE FOLLOW NG ACTI ONS, FOR EACH SOURCE STM:

1. RETRIEVES PO NTERS TO THE RECORD BLOCKS (UTGET2).

2. SETS UP THE LCOCATI ON COUNTER AND OPERAND SCAN PO NTER.
3. CALLS 2ND LEVEL | NSTRUCTI ON PROCESSORS(| CMOP2, | DASMR) .
4. PRINTS ANY STATEMENT W TH NO RCODBLK (QUTPT2) .

FI NI SH BY ROUNDI NG UP LENGTH OF PROG TO DOUBLEWORD BOUNDARY.
CALLS | CMOP2, | DASM2, QUTPT2, UTGET2

USES DSECTS: AVWKTABL, RCODBLK, RSBLOCK

USES MACROS: $CALL, $RETURN, $SAVE, $SLCC

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ASPLM641- 47

*--> CSECT: MXERRM CALLED DURI NG MACRO GENERATI ON TO GENERATE
ERROR MESSAGES NOT HANDLED BY ERRTAG

ENTRY CONDI Tl ONS
RA- SCAN PTR
ERROR TYPE
OPERAND VALUE OR LOCATI ON
= LENGITH OF STRING | F CHAR VALUE
RE- @ MXPNTSACV

RB
RC
RD

EXI T CONDI TI ONS
RB=0 ==> K

RB=4 ==> STORAGE OVERFLOW CAUSED MESSAGE SELECTED | S PLACED
I N RSBLOCK, THEN MOVED OUT TO HI GH AREA BY MXWSR

USES MACRCS: $CALL, $AL2, $SAVE, $RETURN
CALLS MXMV/SR
USES DSECTS: RSBLOCK, MXPNTSAV, MCOPQUAD, AVWKTABL

* * % % * *x * * *x % *x * *x *x * *x * *x * *x *x * *x * *x * *x * * * * *x * *x

X—****>>>>>*>***>X—***

ASPLM641- 48

**.-.> CSECT: MXI NST EXECUTE | NSTRUCTI ONS | N MACRO DEF *S
* ENTRY CONDI Tl ONS: *S
* RC = @ MXPNTSAV *S
* EXI T CONDI TI ONS: *S
*. RB =0 MEND OR MEXI T FOUND *S
*, 4 | NNER MACRO CALL *S
* 8 KILL TH' S MACRO NEST *S
* 12 KILL ALL MACROS *S
* 16 STORAGE OVERFLOW *S
*. *S
*. * x % *x * % *x % *x % *x * *x *x % *x * *x * * *x * *x * *x * * *x * *x * * * **S
**-->] NSUB: MXADDR THI'S ROUTI NE ACCEPTS A ONE-OP + + + + + + +4S
**-->] NSUB: MXARI TH MXARI TH PRODUCES ARI TH ONE- OP A

**-.-> | NSUB: MXI NERRM CALLS MXERRM TO HANDLE ERROR MESSAGES + +S

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ASPLM641- 49

AREA. AVGEN2CD PO NTS TO BEG NNI NG OF STMI

EXI T CONDI TI ONS
RB = ZERO | F OKAY ELSE 4 | F OVERFLOW

USES MACROS: $SAVE, $RETURN, $MALLOCH
USES DSECTS RSBLOCK, REBLK, AVGEN1CD, AVGEN2CD

REG STER USAGES

RAT- MAI N TABLE USI NG
RW SOURCE BLK USI NG
RX- ERROR BLK USI NG
R1, RB- BYTE REG STERS
RA- WORK REG STER

* * *x % * *x % * *x * * *x *x * * *x % * *x * * *x * * *x * * * *x * * *x * *

*--> CSECT: MXWSR MOVES GENERATED STMI' FROM RSBLOCK TO HI GH FREE *

>(->>>>>>> >(-> * % X % X %

*

*

ASPLM641- 50

*--> CSECT: OPCOD1 1 OPCODE TABLES AND LOOKUP CODE
THI'S MODULE CONTAI NS THE CCDE, TABLES TO | DENTI FY OPCCDES.

*

*
*
*
*
*
*
*
*
*
*
*
*

*--> ENTRY: CPFIND 1 LOOK UP AN OPCODE .
ENTRY CONDI TI ONS

RA = SCAN PO NTER TO 1ST CHARACTER OF OPCODE
EXI T CONDI TI ONS

ENTRY | F OPCODE WAS NOT RECOGNI ZED.
0 IF THE OPCODE WAS FOUND | N OPCCDE TABLE

3dad 3

USES DSECTS: AVWKTABL, OPCODTB
USES MACROS: $RETURN, $SAVE, OPG, OPGT
*--> ENTRY: CPINNT 1 I NI TI LI AZE OPCODE ROUTI NE

AS OF 8/17/70, THI'S ENTRY DOES NOTHING |IT
COVPLETENESS, POSSI BLE MODI FI CATI ON REQUI RI

I
I
N

=
S
G

N
I
[

SCAN PO NTER TO 1ST BLANK FOLLOW NG LEGAL OPCCDE, OR SAME AS O

NONZERO VALUE - ERROR CODE FOR | LLEGAL OPCODE ($ERI VOPC)
ADDRESS OF OPCODTB ENTRY FOR THE OPCODE, |IF I T WAS FOUND

EEDED
NCLUDED FOR .
NI T1 ALl ZATI ON. .

ASPLM641- 51

--> CSECT: OUTPUT PRI NTED LI STI NG ROUTI NE .

*

*

*

*
*
*
*
*
*
*
*

*

L I N S S T R R N B N N B R S I R A

*--> | NSUB: QOUTLNSA

OUTPUT HANDLES THE FORMATTI NG AND PRI NTI NG (]: THE ASSEIVBLY
LI STI NG FOR THE ASSI ST ASSEMBLER.

*--> ENTRY: OUEND2 2 PRI NT ENDI NG STATI STICS FOR ASSMBLY .

OUEND2 | S CALLED AT THE END OF THE ASSEMBLY TO PRI NT SUM\/ARY
OF ERRORS AND WARNI NGS | SSUED. FI RST LI NE PRI NTED Q VES
TOTAL # OF STMIS FLAGCGED, TOTAL # ERRORS, TOTAL # WARNI NGS.

I F MAXI MUM # ERRORS | S EXCEEDED, ANOTHER LI NE IS PRI NTED.
USES DSECTS: AVWKTABL

USES MACROS: $PRNT, $RETURN, $SAVE

*--> ENTRY: QUI NT1 1 I NI TI ALI ZATI ON ENTRY - CALLED BEFORE PASS 1 .

QUINT1 IS CALLED TO I NI TI ALI ZE FLAG VALUES AND COUNTERS
USED I N QUTPUT, | NCLUDI NG LI STI NG CONTROL, STATEMENT #,
PAGE COUNT, W THI N- PAGE LI NE COUNT, AND Tl TLE AREA
USES DSECTS: AVWKTABL

USES MACROS: $RETURN, $SAVE

PRINT 1 LINE (WTH HEADI NG | F NEEDED) + + +

*--> ENTRY: QOUTPUT2 PRI NT 1 STATEMENT, WTH CODE AS NEEDED, ERROR .

OUTPT2 PRI NTS 1 STATEMENT, W TH ANY ERROR MESSAGES NEEDED,
PRI NTS TI TLES AND HEADI NGS WHEN REQUI RED, PERFORMS PAGE AND
LI NE COUNTI NG MAI NTAI NS LI STI NG CONTROL STATUS, AND KEEPS
COUNTS OF NUMBER OF STATEMENTS FLAGGED, TOTAL # ERRORS,
TOTAL # WARNI NG MESSAGES.

ENTRY CONDI TI ONS

PRI MARY CALL TYPE CODE

0 ($OUMACH) MACH NE | NSTRUCTI ONS

2 ($OUCONS) CONSTANTS, CNOPS, ETC. PRI NT LOCATI ON COUNTER, CO.
4 ($OULIST) - LISTING CONTROL - EJECT, SPACE, PRI NT, TI TLE
6 ($OUCOMM) - COMMVENTS, ETC. - DO NOT HAVE LOCATI ON COUNTER
AN | NFORMATI ON ADDRESS OF SOME TYPE

@ OBJECT CODE (RB=0, 2)

@# LINES TO SPACE (RB=4, RE=0)

@ PRI NT CONTROL CODE BYTE (RB=4, RE=2) |.E. PRINT

@ TI TLE CODE (RB=4, RE=4)

#-1 OF BYTES OF OBJECT CODE OR TI TLE

SECONDARY CODE OR ADDRESS

SECONDARY CODE FOR LI STI NG CONTROL OPERATI ONS

0 SPACE OR EJECT

2 PRI NT

4 TITLE

USES DSECTS: AVWKTABL, | CBLOCK, RCODBLK, RSBLOCK, RSCBLK, REBLK
USES MACROS: $AL2, $PRNT, $RETURN, $SAVE, $SERR

**-.-> | NSUB: QOUXCM NT ENTRY PO NT FOR CMPRS HANDLING + + + + + + + +

**--> | NSUB: QOUXPRNT LOMLEVEL PRI NT ROUTI NE- 121-BYTE LINE + + + +

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

L T R T T T N R R N .

ASPLM641- 52

*--> CSECT: REMONI REPLACE MONI TOR CONTROL PROGRAM
REMONI HANDLES MOST OF THE DETI ALS REQUI RED FOR A STUDENT TO .

VWRI TE AN ASSI ST CSECT, HAVE I T ASSEMBLED BY ASSI ST, AND THEN RUN

A TEST PROGRAM THE ENTRYPO NTS OF HI S PROGRAM ARE CALLED ALONG

W TH THE ORI G NALS, AND HI S RESULTS CHECKED FOR ACCURACY. WHI LE

ADDRESS CONSTANT MODI FCATI ON IS PERFORMED, THE ENTI RE PROCESS | S .

STILL A SERIALLY RESUABLE PROGRAM SEE THE ASSI ST REPLACE USER S .

GQUIDE FOR DETAILS ON USI NG THE REPLACE MONI TOR.

NAMES: RE------ MAI N CCDE BODY AND | NSUBS.
NAMES: RG ----- CHECKI NG CODE FOR RETURN VALUES.
NAMES: RH------ EXTERNAL CALL CHECKI NG (&$REPL=2)

CALLS SYFI ND
USES DSECTS: AJOBCON, AVWAKTABL, ECONTROL, RECORBLK, RFSYMBLK
USES MACROS: $CALL, $PRNT, $RETURN, $SAVE, REPRNT, XDECO, XSNAP

OVERALL REG STER CONVENTI ONS AND USAGE.
RO, R1, R2, R3, R4, R15 WORK REG STERS

R5 = @ RECORBLK ELEMENT FOR CURRENT ENTRY BEI NG PROCESSED.

R6 = BASE REG STER FOR MAI N CODE OF EACH REMONI ENTRY POl NT.
R7, RS USUAL PARAMETER REGS FOR | NTERNAL SUBROUTI NES.

RO = LINK REG STER FOR | NSUBS WHI CH MUST CALL OTHERS W TH R14.
R10= @ ECONTROL (EXECUTI ON CONTROL BLOCK, USER PSEUDO REG STERS.
R11= @ AJOBCON DSECT (MAI N JOB CONTROL TABLE)

R12(RAT) = @ VW\KTABL CSECT (AVAKTABL DSECT).

R13= SAVE AREA ADDRESS, BASE REG STER FOR DATA, | NTERNAL SUBRS.
R14= | NTERNAL LI NK REG STER LOCAL WORK REG STER.

> ENTRY: REENDA REPLACE MODULE: POST- ASSEMBLY PROCESSI NG
REENDA |'S CALLED JUST AFTER AN ASSEMBLY | S COVPLETED.
IF THE RUN IS NOT A REPLACE RUN, NOTHI NG | S DONE.

IF IT 1S REPLACE PHASE A, THE ASSEMBLED PROGRAM WAS A REPLACE:
VERSI ON OF AN ASSI ST MODULE, SO CHECK AND MODI FY ASSEMBLER ADCONS. .

IF THE RUN | S I N PHASE B, THE ASSEMBLY JUST FI NI SHED WAS
A TEST PROGRAM SO PRI NT PERFORMANCE STATI STI CS FOR THE MODULE.
ENTRY CONDI TI ONS
R11= @ AJOBCON (MAIN JOB CONTROL BLOCK) .
R12(RAT) = @ W\KTABL CSECT (AVWAKTABL DSECT).
CALLS SYFI ND
USES DSECTS: AJOBCON, AVWAKTABL, RECORBLK, RFSYMBLK, SYMSECT

> | NSUB: REEXDECO CONVERT NUMBER TO DECI MAL + + + + + + + +

* > ENTRY: REFAKE | NTERCEPT REPLACED CALLS, CHECK REAL/ USER .
*, ENTRY CONDI TI ONS

*. R15(BITS 0-7)= OFFSET CODE # FOR SPECI FI C ENTRY BEI NG CALLED.

*. RO-R14 ARE AS DESCRI BED | N ASSEMBLER CALLI NG CONVENTI ONS.

*

**--> | NSUB: REFRFC TEST ECRFLAG AND PRI NT NEEDED | NFOR + + + +

**--> | NSUB: REGCRARE USI NG RERCEFLG, FLAG AND PRI NT REG M5G + +

**--> | NSUB: REGC1213 CHECK USER REGS 12-13, FLAG RERGEFLG + + + +

**-.-> ENTRY: REI NTA I NI TI ALZE BEFORE ASSEMBLER CALLED .

L S S T R N R

*

ASPLM641- 53

THI'S ENTRY IS CALLED 1 TI ME BEFORE ASSI ST ASSEMBLER | S CALLED.

I T ALSO MAY SET FLAGS I N AWWKTABL | F THE SYSTEM IS IN

REPLACE PHASE A (ASSEMBLE REPLACEMENT PROGRAM AND LINK IT).

ENTRY CONDI TI ONS

R11= @ AJOBCON (MAIN JOB CONTROL BLOCK) .
R12(RAT) = @ VW\KTABL CSECT (AVAKTABL DSECT).

THI'S PERM TS REI NTA TO MODI FY ASSEMBLER CONTROL FLAGS | F
NEEDED TO MAKE ASSEMBLER PERFORM REQUI RED ACTI ONS.
USES DSECTS: AJOBCON, AVWKTABL

+--> | NSUB: REREAL

**--> | NSUB: REREGS

*
*
*
*
*
*
*
*
*
*
*. RA
*. RB
*
*
*
*
**__>
**__>
**__>
**__>
*k_ L >
**__>
**__>

USED I N A VCON.
SYMBOLS SYMSECT.

*--> ENTRY: RESYMB

REPLACE REAL ADCONS | N VWAKTABL | F NOT THERE.

I T CHECKS FOR PRESENCE OF REAL ADDRESS CONSTANTS | N VAKTABL, AND
REPLACES THEM | F THEY HAVE BEEN MODI FI ED I N PREVI OQUS REPLACE RUN.

AVWKTABL: HAS BEEN COVPLETELY | NI TI ALI ZED BY MAI N PROGRAM ASSI ST.

+

FORVAT PARAMETER REGS AND PRINT THEM + + + + +

ENTER CODE I N SYMBCOL TABLE OF CALLABLE ENTRY.
RESYMB | S CALLED FROM CVCON2 | F A SYMBCOL FLAGGED EXTRN IS
I T PLACES A CODE | NTO THE SYVALUE ENTRY OF THE
TH S CODE (THE OFFSET TO A CALLABLE ENTRY
ELEVMENT I N THE SECOND SECTI ON OF RFSYMS),
VWHEN THE USER PROGRAM ACTUALLY CALLS THE ROUTI NE.

ENTRY CONDI TI ONS

RA = @ SYMSECT FOR THE EXTRN SYMBOL.
ALL OTHER REGS: SAME AS ASSEMBLER REQ STER CONVENTI ONS.

EXI T CONDI TI ONS

0
4

| NSUB:

| NSUB:

| NSUB:

I NSUB:

| NSUB:

| NSUB:

I NSUB:

@ SAME SYMSECT, BUT CODE HAS BEEN ENTERED | N SYVALUE.

| F SYMBOL WAS LEG TAMATE.

| F SYMBOL WAS NOT LEG TAMETE ENTRY TO BE CALLED.
NAMVES: RES-----
USES DSECTS: RFSYMBLK, SYMSECT

REXCON3

REXPRI NT

RGENTS

RGRAADDR

RGRCADDR

RHENTS

RHRAADDR

CONVERT 3 BYTES OF REG STER R7 TO HEX. +
PRINT MESSAGE + + + + + + + + + + + + + +
CHECK USER VALUES | N PARAMETER REGQ STERS+
CHECK LEG TAMACY OF SCAN PTR RA + + + + +
CHECK RC FOR @I NSI DE USER PROG + + + + +
CHECK PARM REGS PASSED TO CALLED PROGRAM*

CHECK RA FOR REASONABLE @+ + + + + + + +

I S USED FOR CHECKI NG

+

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ASPLM641- 54

*--> CSECT: RFSYSM5 TABLE OF CSECT- ENTRY NAMES- REPLACE

RFYSMS (SECT. 1) HAS AN ELEMENT FOR EACH CSECT WH CH CAN.
BE DYNAMM CALLY REPLACED BY A USER-VWRI TTEN ROUTI NE. EACH
ELEMENT CONTAI NS THE NAME OF THE CSECT, THE NUMBER COF
ENTRY PONTS IN IT, AND A LI ST OF ENTRY PO NT NAMES AND
OFFSETS TO THEI R ADCONS | N AWWKTABL, SO THEY CAN BE CHANGED.

THE 2ND SECTION | S PRESENT | F &REPL=2. | T LI STS ALL
ENTRYPO NTS WHI CH CAN BE CALLED FROVA USER PROGRAM W TH
OFFSET @ PTRS TO THEI R ADCONS | N AWNKTABL, AND TO CODE I N
SECTI ON RHENTS OF REMONI. THI S CODE | S USED TO CHECK THE
REGQ STERS PASSED BY THE USER TO THE CALLED PROGRAM

THE 3RD SECTION | S ALSO PRESENT ONLY | F &REPL=2. IT .
HAS LABELS OF THE FORM RI &CSECT, W TH &CSECT BEI NG ONE WHI CH .
NOT ONLY CAN BE REPLACED, BUT CAN ALSO CALL OTHER ROUTI NES. .
EACH ELENMNT CONTAI NS A HALFWORD W TH THE NUMBER OF DI FFERENT .
SUBROUTI NE ENTRI ES WHICH THI' S CSECT IS PERM TTED TO CALL,
FOLOVWED BY THAT # OFFSET VALUES TO THE ELEMENTS I N THE 2ND
SECTI ON OF THOSE ENTRIES I T CAN CALL. REMONI OBTAI NS AN
OFFSET FROM RFSYM5S TO RI &CSECT FROM THE RFSYMBLK BELONG NG
TO THAT CSECT. NOTE, |IF A CSECT CAN CALL NO OTHER, THE
VALUE SAVED IS = 0.

NAMES: RI------ (I'N SECTION 3, |F &REPL=2)
DSECT RFSYMBLK |'S USED TO DESCRI BE EACH ENTRY | N SECTS. 1&2.
USES MACROS: $AL2, RFSGN

*

*
*
*
*
*
*
*
*
*
*
*
*
*

ASPLM641- 55

*--> CSECT: SCANRS 1-2 SCANNING ROUTINES
SCANRS CONTAI NS VARI QUS UTI LI TY SCANNI NG ROUTI NES. ALL 3
ENTRI ES TERM NATE SCANNI NG ON FI NDI NG A BLANK. 1 ENTRY ALSO
STOPS FOR A COMVA, AND THE OTHER STOPS FOR AN EQUALS SI GN\. .
****NOTE**** THI S ROUTI NE MODI FI ES TABLE AWIZTAB | N AVWKTABL. .
I T MAY THEN CALL SDBCDX W THOUT RESETTI NG THE TABLE. TH S
'S AN EXCEPTI ON TO THE RULE OF NOT PERM TTI NG MODI FI CATI ON
TO AV------ SECTI ONS WHEN CALLI NG ANOTHER MODULE.
CALLS SDBCDX
USES DSECTS: AVWKTABL
USES MACROS: $CALL, $RETURN, $SAVE, $SETRT
NAMES: SCAN- - - -

*--> ENTRY: SCANBL SCAN TO BLANK ONLY. . .
ENTRY AND EXIT CONDI TI ONS SAME AS SCANEQ

* X

*

*

* % X % X X *

RA

RA
RB

*--> ENTRY: SCANCO SCAN TO COMVA OR BLANK (USED BY A- TYPE ADCON.

ENTRY AND EXI T CONDI TI ONS SAME AS SCANEQ

*--> ENTRY: SCANEQ SCAN TO = OR BLANK(USED BY | AMOP1 FOR LI TERA.

ENTRY CONDI TI ONS

SCAN PO NTER

EXI'T CONDI TI ONS

SCAN PO NTER TO = OR BLANK, OR ERRCR | F ANY .
0 | F SCAN OK, = ERRCOR CODE | F ERROR FOUND(|I N SELF- DEF TRM).

* 0% % %k X F Xk

RA

RA
RB
EB
RB
RC

ASPLM641- 56

*--> CSECT: SDTERM SELF- DEFI NI NG TERM CONVERSI ONS.

SDTERM | NCLUDES AN ENTRY PO NT FOR CONVERTI NG EACH TYPE COF
SELF- DEFI NI NG TERM AND AN ENTRY PO NT WHI CH FI RST DECI DES
VWH CH TYPE(I F ANY) THE SCAN PO NTER IS PO NTI NG AT, THEN
BRANCHES TO THE CORRECT SECTI ON TO CONVERT THE TERM

USES DSECTS: AVWKTABL

USES MACROS: $RETURN, $SAVE

*--> ENTRY: SDBCDX 1-2 DETERM NE TYPE OF SELF- DEFI NI NG TERM CHECK.

DECI DE TYPE OF SELF- DEFI NI NG TERM BRANCH TO RI GAT SECTI ON.
ENTRY CONDI TI ONS

SCAN PO NTER TO BEG NNING OF TERM TO C B, X, OR 1ST DIG T
EXI T CONDI TI ONS

SCAN PO NTER TO DELI M TER BEYOND TERM (NOT ' ENDI NG B, C, X)
0 SELF DEFI NI NG TERM WAS LEGAL

>0 - ERROR CODE - | LLEGAL TERM ($ERSDI NV)

-4 ==> SCAN PO NTER DI D NOT PO NT AT SELF- DEFI NI NG TERM
VALUE OF SELF-DEFINING TERM FROM 0 TO 2**24-1

**-.-.> ENTRY: SDBTRM 1-2 SCAN, COVPUTE BI NARY SELF- DEFI NI NG TERM .

*

*

ENTRY, EXIT CONDI TONS SAME AS SDBCDX, EXCEPT RB >= 0 ON EXI T:

**-.-.> ENTRY: SDCTRM 1-2 SCAN, COWUTE CHARACTER SELF- DEFI NI NG TERM

*

*

*

ENTRY, EXIT CONDI TONS SAME AS SDBCDX, EXCEPT RB >= 0 ON EXIT.
NAMVES: SDC---- -

**-.-.> ENTRY: SDDTRM 1-2 CHECK OR CONVERT DECI MAL SELF- DEFI NI NG TERM .

*

*

ENTRY, EXIT CONDI TONS SAME AS SDBCDX, EXCEPT RB >= 0 ON EXIT.
NAMVES: SDD-----

**-.-.> ENTRY: SDXTRM 1-2 SCAN, COVPUTE HEXADECI VAL SELF- DEFI NI NG TERM

*

*

*

ENTRY, EXIT CONDI TONS SAME AS SDBCDX, EXCEPT RB >= 0 ON EXIT.
NAMVES: SDX-----

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ASPLM641- 57

*--> CSECT: SYMOPS 1-2 ALL NORVAL SYMBOL TABLE OPERATI ONS.

SYMOPS BUI LDS, MAI NTAINS, AND RETRI EVES FROM THE SYMBCL .
TABLE OF THE ASSI ST ASSEMBLER. THE SYMBOL TABLE IS A VI RUTAL.
SCATTER TABLE, W TH CHAI N ORDERI NG BY A SECONDARY HASH CODE.
ALL SYMBOLS ARE HASHED | NTO A SMALL PRI MARY PO NTER TABLE.
EACH WORD I N THE PRI MARY TABLE PO NTS TO A LI NKED LI ST OF
SYMBOLS HASHI NG TO THAT LOCATION I N THE PRI MARY TABLE. THE
SYMBOLS ARE ORDERED ON THE LI ST I N DESCENDI NG ORDER BY THE
VALUE OF A SECOND HASH CODE, WHICH IS KEPT I N THE LI NK

PO NTER PO NTI NG TO THE SYMBOL TO WHICH I T BELONGS. THI' S
METHOD |'S USED BECAUSE MAKES NO ASSUMPTI ONS ABOUT THE FI NAL
SIZE OF THE FI NAL SYMBOL TABLE, PERM TTI NG ALLOCATI ON OF

ENTRI ES FROM THE DYNAM C AREA. I T ALSO PERM TS A VERY FAST
(3 FAST I NSTRUCTI ONS) MAJOR SEARCH LOOP, WHI CH STILL G VES
GO0D PERFORVACNE EVEN W TH A SMALL | NI TI AL PO NTER TABLE

AND LONG LI STS OF SYMBOLS.

CALLS MOSTOP

USES DSECTS: AVWKTABL, SYMSECT

USES MACROS: $ALLOCH, $CALL, $RETURN, $SAVE

**.-> ENTRY: SYEND2 2 CLEANUP AT END OF PASS 2.

*

*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

RA
RB

RA
RB

RA

RA
RB

#** EUTURE USE - W LL COMPUTE SYMBOL TABLE STATI STI CS.

*--> ENTRY: SYENT1 1 ENTER A SYMBCL | NTO TABLE, RETURN ADDRESS.

ENTRY CONDI TI ONS

SCAN PO NTER TO FI RST CHARACTER OF THE SYMBOL

NUMBER OF CHARACTERS IN THE SYMBOL = 1 - 8

EXI T CONDI TI ONS

ADDRESS I N THE SYMBOL TABLE WHERE SYMBOL | S

0 THE SYMBOL WAS ALREADY PRESENT | N THE TABLE

4 THE SYMBOL WAS NOT ALREADY PRESENT | N THE TABLE

*--> ENTRY: SYFIND 1-2 LOOK UP SYMBOL, REPORT PRESENCE/ ADDRESS.

ENTRY CONDI TI ONS

SCAN PO NTER TO FI RST CHARACTER OF THE SYMBOL

NUMBER OF CHARACTERS IN THE SYMBOL = 1 - 8

EXI T CONDI TI ONS

ADDRESS OF THE SYMBOL I N THE SYMBOL TABLE, IF IT IS THERE
0 THE SYMBOL IS IN THE TABLE

4 THE SYMBCOL IS NOT IN THE TABLE

**-.-.> ENTRY: SYINT1 1 I NI TI ALI ZE SYMBCOL TABLE .

*
*

*

OBTAI NS SPACE FOR I NI TIAL POl NTER TABLE, ZERCES IT.
ALSO SAVES THE ADDRESS OF THE | NI TI AL POl NTER TABLE.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ASPLM641- 58

*--> CSECT: UTOPRS 1-2 UTILITY DATA SET ROUTI NES .

THI' S MODULE PERFORMS ALL THE HANDLI NG WHI CH V\llJLD
NORVALLY BE DONE USI NG SECONDARY STORAGE FOR | NTERMVEDI ATE
SCURCE RECORDS AND FOR OBJECT CODE. |IT USES THE LONER END .
OF THE DYNAM C CORE AREA TO STORE THE RECORD BLOCKS (RSBLOCK, .
RSCBLK, REBLK) RESULTI NG FROM THE SOURCE PROGRAM AND PLACI NG .
THEM DURI NG PASS 1 SO THAT THE OBJECT CODE CAN BE OVERLAID .
INTO THE SAME AREA. |.E. IN NO CASE WLL THE RECORDS BLOCKS .
FOR A SOURCE STATEMENT BE PLACED NEARER THE BEG NNI NG OF THE .
AREA THAN THE OBJECT CODE RESULTI NG FROM THE STATEMENT.

CODE FOR THI S MODULE DEPENDS HEAVI LY ON &$DI SKU, WH CH
CAN ALLOW UTOPRS TO USE DI SK FOR | NTERMVEDI ATE STORAGE.

&$DI SKU = 0 ==> EVERYTHI NG | N CORE (NORMAL ASSI ST).
&$DI SKU = 1 ==> USER HAS | NCROEE/ DI SK OPTI ON (DI SKU, NODI SKU)
&DI SKU = 2 ==> ALWAYS GO TO DI SK, NO | NCORE CODE EXI STS.

USES MACROS: $DI SK, $RETURN, $SAVE
CALLS XXXXDKOP, XXXXDKRD, XXXXDKEL, XXXXDKWI
USES DSECTS: AVWKTABL

**--> ENTRY: UTEND1 1 END PASS 1, PREPARE FOR PASS 2 OF ASSEMBLER .

*

*

*
*
*
*
*
*
*
*
*
*

RC
RE

UTEND1 RESETS CORE PO NTERS AND CALCULATES RELOCATI ON FACTCR. .

*--> ENTRY: UTEND2 2 CLEANUP AFTER PHASE 2 DONE.

UTEND2 IS CALLED AT THE END OF ASSEMBLY PASS 2. | T ASSURES
THAT ANY DS STATEMENTS ENDI NG THE PROGRAM W LL BE FILLED IN .
WTH 5'S, LIKE ANY OTHER DS' S FOLLOAED BY CODE (THE VERY LAST.
STRING OF DS'S MAY NOT BE CAUGHT BY UTPUT2). I T DOES TH S BY.
CALLI NG UTPUT2 W TH SOVE NONEXI STENT OBJECT CODE. .
CALLS UTPUT2

USES DSECTS: AVWKTABL

USES MACROS: $SAVE

*--> ENTRY: UTGET2 2 GET FROM UTI LI TY DU RNG PASS 2.

UTGET2 IS CALLED DURI NG PASS 2 TO RETRI EVE THE ADDRESSES O:
THE SET OF RECORD BLOCKS BELONG NG TO THE NEXT STATEMENT. A
CHECK |'S REQUI RED FOR ANY OFFSET ADJUSTMENT MADE BY UTPUTL,
VWH CH MADE SURE THAT NO RECORD BLOCK COULD BE OVERLAI D BY

I TS OAN CODE.

EXI T CONDI TI ONS

@ RSBLOCK (THE ONLY BLOCK DEFI NI TELY PRESENT) .

0 NCRMAL RETURN. RE = 4 ==> END-FO-FILE-QUI T

AVRSBPT, AVRCBPT, AVRSCPT NOW PO NT TO THEI R BLOCKS, |F THEY EXI ST.
AVREBLK HAS HAD THE REBLK MOVED INTO I T, |IF THERE WAS ONE.
AVREBPT I'S NOT CHANGED, STILL PO NTS AT AVREBLK, AS ALWAYS.

*--> ENTRY: UTINT1 1 I NI TIALI ZE UTI LI TY RCUTI NES .

INI TI ALl ZES UT POl NTER TO BEG NNI NG OF RECORD BLOCK AREA.
USES DSECTS: AVWKTABL
USES MACROS: $RETURN, $SAVE

ASPLM641- 59
**-.-> | NSUB: UTPMOVE MOVE 1 RECORD BLOCK | NTO DYNAM C AREA + + + + +

**..> ENTRY: UTPUTL 1 WRITE TO UTILITY DURI NG PASS 1. . .

* UTPUT1 MOVES ALL EXI SI STI NG RECORD BLOCKS FOR A STATEMENT
* | NTO THE LOW END OF THE DYNAM C CORE AREA, AT THE END OF

* PROCESSI NG EACH STATEMENT DURI NG PASS 1. THE BLOCKS ARE
* NEVER PLACED CLOSER TO THE BEG NNI NG OF THE RECORD BLOCK
* AREA THAN ANY OBJECT CODE WHI CH COULD BE PRODUCED BY THE
* STATEMENT. THI'S MAKES | T SAFE I N PASS 2 TO JUST MOVE

* OBJECT CODE | NTO THE SAME OVERALL AREA, W TH NO FEAR OF

* OVERWRI TI NG RECORD BLOCKS STILL NEEDED FOR THE SAME OR

* LATER STATEMENTS. THE BLOCKS ARE PLACED I N THI S ORDER

* RSBLOCK, (RCODBLK), (REBLK), (RSCBLK) W TH THE BLOCKS

* IN () PLACED | F THEY EXIST. **NOTE** BLOCKS RSBLOCK AND
* RCODBLK ARE ALWAYS AL|I GNED TO FULLWORD BOUNDARY.

* CALLS MOSTOP

* USES DSECTS: AVWKTABL, RSBLOCK

* USES MACROS: $ALI GR, $CALL, $GLOC, $RETURN, $SAVE

*

**.-.> ENTRY: UTPUT2 PRODUCES AND RELOCATES OBJECT CODE. . .

* UTPUT2 MOVES OBJECT CODE PRCODUCED BY THE ASSEMBLER | NTO IT

* PROPER LOCATI ON I N THE OBJECT PROGRAM APPLYI NG DUPLI CATI ON

* FACTOR AT THI'S TI ME, | F NECESSARY. BECAUSE OF THE WAY THE

* ASSI ST | NTERPRETER EXECUT WORKS, AND BECAUSE OF THE PSEUDO

* START CARD USED BY THE REPLACE MONI TOR, NO RELOCATI ON NEED .
* EVER BE DONE BY THI S PROGRAM MAKING I T FAST AND SMALL. THE .
* MODULE ALSO FILLS IN AREAS OF THE OBJECT PROGRAM HAVI NG NO
*. CODE W TH CHARACTER 5' S, WHI CH HELP REDUCE THE SI ZE OF ANY

*. COVPLETI ON DUMPS, AND Al D DEBUGA NG (X' F5F5F5" SHOWS UP

* DI STI NCTI VELY IN A DUVMP, AND | S NOT A LEGAL | NSTRUCTI ON).

* ENTRY CONDI TI ONS
* PROGRAM LOCATI ON COUNTER OF THE OBJECT CODE
* @ ASSEMBLED CODE | N MEMORY
* LENGTH- 1 OF OBJECT CODE
* DUPLI CATI ON FACTOR FOR THE CODE - 1 OR GREATER
* USES DSECTS: AVWKTABL
* USES MACROS: $RETURN, $SAVE
*

GICEE:

ASPLM641- 60

**..> CSECT: VWKTABL MAI N ASSEMBLER COVMUNI CATI ON TABLE. . . .
*, THI S | S ACTUAL TABLE THAT AVWKTABL DSECT CORREPSONDS TO.
*. SEE AVWWKTABL COMMVENTS FOR DESCRI PTI ON.
*
%
*

L B R R

ASPLM641- 61

* _ > (BEC'I’ XMT(ENTRY XDJDLJT) * x % *x * % *x % *x * *x * *x *x * *x * *
XGET - XPUT MONI TOR. USES TABLE XDDTABDE TO CONTRCL
| /O THROUGH USER CALLS TO XGET & XPUT.
CALLS $READ, $PRNT, $PNCH, XGET, XPUT NMACRCES.
E. X
THE MONI TOR WLL NOT PERM T A USER TO XGET A $READ FI LE,
| NSTEAD, THE MONI TOR WLL CALL $READ AND THE USER W LL
NOT KNOwW ABOUT | T.

* * % % * *x * % *x % *x * *x *x * *x * *x * *x * * *x * *x * *x * * *x * *x * *x

L S T

ASPLMB41- 62

__>(BEC'I’:XDDTABLE***********************
* CONTAI NS | NFORVATI ON ON EACH FI LE FOR THE MONI TOR *

* *x % *x * % * % *x * *x * * * * *x * *x * * * * *x * *x * * * * *x * *x * * *x *

ASPLM641- 63

--> CSECT: XXDDFI NI CLOSES XCGET- XPUT FI LES * * * * * * % % % * % %
LI KE XXXXFI NI, CALLED AT SAME TI ME.
BUT CLOSES ONLY THE FI LES NANDLED BY XCGET- XPUT

* ok Xk

SEARCH TABLE ' XDDTABLE FOR FI LES THAT ARE OPEN AND ARE HANDLE|

BY XCET- XPUT. *
WHEN FOUND, CLOSE THEM THROUGH XGET- XPUT. BLANK OUT FI RST BYTE
OF NAME I N TABLE. | F NOY PERVANENT, AND NOT OPEN, *
JUST W PR OOT FI RST BYEE. *

*
*
*
*
*
*
*
*
*
*

* *x % % * % * % *x % *x * * * * *x * *x * * * * *x * *x * * * * *x * *x * * *x

ASPLM641- 64

¥.-.> CSECT: XXXXDECI EXTENDED DECI MAL | NPUT CONVERSI ON MODULE. .
* XXXXDECI 1S CALLED BY MACRO XDECI TO PERFORM SCANNI NG AND
* CONVERSI ON OF DECI MAL STRI NGS.

* ENTRY CONDI TI ONS

*. Rl14= ADDRESS OF XDECI B DSECT CREATED BY CALLI NG XDEC! .

*. R15= ENTRY PO NT ADDRESS (=V(XXXXDEC!)

* EXI'T CONDI TlI ONS

* XDEC!I R1, XDECI RV VALUES ARE FI LLED I N FOR REGS.

* CC IS SET ACCORDI NG TO SIGN OF RESULT, OR = 3 I F ERROR

* USES DSECTS: XDECI B

* NAMES: XXDI - - - -

*

ASPLM641- 65

**.-.> CSECT: XXXXDECO EXTENDED DECI MAL QUTPUT CONVERSI ON MODULE .

* XXXXDECO | S CALLED BY MACRO XDECO TO CONVERT A REG STER

* VALUE TO EDI TED DECI MAL, IN A 12-BYTE AREA, WTH SI G\.

* ENTRY CONDI TI ONS

*. Rl14= ADDRESS OF XDECOB DSECT CREATED BY XDECO

*. R15= ENTRY PO NT ADDRESS (=V(XXXDECO

* EXI'T CONDI TlI ONS

* EDI TED 12- BYTE RESULT OF REQ STER ARGUMENT STORED AT ADDRESS ARG
* USES DSECTS: XDECOB

* NAMVES: XXDO- - - -

*

L I I S S T R T N

ASPLM641- 66

*..> CSECT: XXXXHEXI EXTENDED HEXADECI MAL | NPUT CONVERS| ON MODULE . .
XXXXHEXI |'S CALLED BY MACRO XHEXI TO SCAN THE | NPUT STRI NG
AND CONVERT | T TO HEXADECI MAL | NPUT.
ENTRY CONDI TI ONS
Rl4= ADDRESS OF A STORAGE AREA W TH R14- Rl STORED
R15= ENTRY PO NT ADDRESS (V(XXXXHEXI))
RO= ADDRESS OF STRI NG TO BE SCANNED.
EXI T CONDI TI ONS:
VALUE OF CONVERTED STRI NG | N STORAGE AREA POl NTED TO BY R14,
STORED | N 16 PASSED R14 OR | N XHEXI NUM
RL= ENDI NG ADDRESS OF STRING, |.E. FI RST NON-HEXADECI MAL DI G T.
CC SET=3 | F ERROR
USES DSECT XHEXI B.
NAMVES: XXH

L S S T R N R

ASPLMB41- 67

.--> CSECT: XXXXHEXOEXTENDED HEXADECI MAL OUTPUT CONVERSI ON MODULE .

XXXXHEXO |'S CALLED BY MACRO XHEXO TO CONVERT A REG STER VALUE.
TO EDI TED HEXADECI MAL | N AN 8- BYTE AREA.
ENTRY CONDI TI ONS:
R14= ADDRESS OF SAVEAREA FOR CALLI NG MACRO
R15= ENTRY PO NT ADDRESS.
RO ADDRESS OF AREA WHERE CONVERTE STRI NG GOES
REG STER VALUE | N XHEXOREG
EXI T CONDI TI ONS:
8- BYTE CONVERTED NUMBER OF REG STER ARGUMENT STORED AT ADDRESS
ARGUMENT
USES DSECT XHEXCB.
NAMES: XXHO- - - -

ASPLM641- 68

*¥*_.> CSECT: XXXXIOCO ASSI ST | NPUT/ QUTPUT CONTROL PROCESSI NG . .

* XXXXI OCO CONTAI'NS ALL ACTUAL | NPUT/ QUTPUT OPERATI ONS.

* XXXXINIT AND XXXXFI NI ARE USUALLY CALLED ONCE EACH, TO

* PERFORM | NI TI ALI ZATI ON AND TERM NATI ON RESPECTI VELY.

* THE ENTRI ES XXXXSORC, XXXXREAD, XXXXPNCH, XXXXPRNT ARE CALLED

* TO READ SOURCE CARDS, READ DATA CARDS, PUNCH CARDS, OR PRI NT
* LI NES DURI NG EXECUTI ON. THE DCB'S FOR READ AND PNCH ARE NOT
* OPENED UNLESS THEY ARE USED, AND | F USED W THOUT WORKABLE

* OPEN S, THEY DEFAULT BACK TO SORC AND PRNT, RESPECTI VELY.

* THESE 4 ENTI RES SHARE A COMMON BASE REG STER (R13, ALSO @ SAVE*
* AREA), COVMON VALUES OF R11 (@ AJOBCON) AND R12 (CONSTANT 1)*
*
*
*
*
*
*
*
*
*
*

L R T T

COWVON EXI T CODE. ~ SCRC AND READ SHARE SOME COWMON CODE (GET)*
AND PNCH AND PRNT SHARE SOVE COMMON CODE (PUT) .

THESE ROUTI NES ARE DES| GNED TO ACCEPT THE XI OBLOCK SET UP BY *
THE XI ONR MACRO($READ, $PRNT, $PNCH, $SORC) . LOCATE MODE | S

USED TO M NI M ZE MOVEMENT OF CARD AND LI NE | MAGES. *
NOTE REMOTE OPEN/ CLOSE PARM LI STS ARE USED TO SAVE SPACE.
UNDER A DOS SYSTEM NO SUCH LI ST EXI STS DUE TO THE NON-

EXI STENCE OF MACRO EXECUTE FORMB FOR THE CLOSI NG OF DTF' S
USES MACROS: DCB, DCBD(OS) . OR DTF--(DOS) (OVERALL USE)

**_-> | NSUB: XXFI XUP UPDATE BCB PO NTERS TO NEXT BUFFER + + + + + +

**__> | NSUB: XXI OPENO OPEN OPTI ONAL DATA SET, FIX FLAGS + + + + + + +

*--> ENTRY: XXXXDKE1l COVPLETE PASS1 PROCESSI NG SET UP FOR PASS 2 .
. XXXXDKEL | S CALLED FROM UTEND1. XXXXDKE1 WRI TES LAST BUFFER .
OR I F NO PREVI QUS WRI TES WERE PERFORMED, PASSES UTGET2 THE
I NI TI ALE ADDRESS OF THE ONLY BUFFER USED. | F AT LEAST 1
VWRI TE TO DI SK WAS DONE, XXXXDKE1PO NTS THE DI SK TO START
AND READS N-1 BUFFERS FROM THE DI SK AND SETS UP FOR
PASS 2 OF THE ASSI ST ASSEMBLER.

*

*

*

*

*

*

*

*

*. REG STER ASSI GNMENTS

*, R14-> XI OBLOCK PO NTER REGQ STER
* R15-> TEMP. BASE REG STER
* R2-> COUNTER WORK REG STER
* R3-> DECB PO NTER

* R4-> BUFFER PO NTER

* R8- > WORK REAQ STER

*

*

*

*

USES DSECTS: XXI OBLOCK, AVWKTABL
USES MACROS: READ, WRI TE, PO NT, CHECK

**-.-> ENTRY: XXXXDKOP NI TIALI ZES FOR DI SK UTILITY RUN . . .

* ALL XXXXDK ENTRI ES BY RI CHARD FORD, PAUL WEI SSER.

* XXXXDKOPI S CALLED FROM UTINT1 | F THE DI SK UTI LI TY OPTI ON

* 'S ENABLED. | T PERFORM5 A STANDARD FORM OPEN ON THE DI SK

*, UTILITY DCB, | N TIALIZES ANY VARl ABLES USED BY THE DI SK .
*, UTI LI TY ROUTI NES. XXXXDKOP ALSO COVPLETES THE DECB' S CREATED .
* FOR BUFFER POOL MANAGEMENT BY FILLING I N THE RESPECTI VE

* BUFFER ADDRESS. | N BATCH MODE XXXXDKOP RESETS THE DI SK DATA

* SET WTH A PO NT MACRO | NSTRUCTI ON.

*
*

ASPLM642- 69

REG STER ASSI GNVENTS
R13-> SAVE AREA PO NTER
R14-> XI OBLOCK PO NTER REG STER
R15-> TEWMP. BASE REGQ STER
RO-> HOLDS LOW END PO NTER TO BUFFER AREA
R1-> WORK REGQ STER
R3-> HOLDS NUMBER OF BUFFERS FOR LOCP CONTRCL
R7-> BASE REG STER FOR AVWKTABL

USES MACROS: POINT (CS), PO NTS (DOS)
USES DSECTS: AWMKTABL, XXI OBLOCK

L I S T S R I S

*..> ENTRY: XXXXDKR RETURN A SET OF RECORD BLOCKS TO UTGET2 .
XXXXDKRD |'S CALLED BY UTGET2 WHEN | T HAS COVPLETED
PROCESSI NG A SET OF RECORD BLOCKS. XXXXDKRD RETURNS THE
ADDRESS OF THE NEXT BUFFER TO BE PROCESSD VI A THE BUFFER
CONTROL BLOCK AND RE- FI LLS THE BUFFER WHI CH WAS JUST
PROCESSED. WHEN ALL BLOCKS HAVE BEEN READ, XXXXDKRD CON-
TI NUES TO ACCEPT CALLS UNTIL ALL BUFFERS HAVE BEEN
PROCESSED, AT WH CH TI ME AN END- OF- FI LE | NDI CATI ON
(CC=1) |'S RETURNED.

REG STER ASSI GNMVENTS
R13-> BASE REG STER AND SAVE AREA PO NTER
R14-> XI OBLOCK PO NTER REGQ STER
R15-> TEWMP. BASE REGQ STER
R2-> WORK REG STER FOR COUNTER
R3-> DECB PO NTER
R4- > BUFFER PO NTER

USES MACROS: READ, CHECK

*--> ENTRY: XXXXDKWI WRITE A FULL BUFFER TODISK
XXXXDKWE |'S CALLED FROM UTPUT1 WHEN PASS1 HAS FI LLED A
BUFFER. XXXXDKWI WRI TEESTHE BUFFER TO DI SK AND UPDATES
THE BUFFER MANAGEMENT TABLE WWH CH RETURNS THE ADDRESS OF
THE NEXT AVAI LABLE BUFFER TO UTPUTL.

*

*

*

*

*

*

* REG STER ASSI GNVENTS

*. R13-> BASE REG STER AND SAVE AREA PO NTER
*. R14-> XI OBLOCK PO NTER REG STER

* R15-> TEWMP. BASE REGQ STER

* R3-> PO NTER TO CURRENT DECB

* R4- > BUFFER PO NTER

* R5-> BUFFER LENGTH USED ACCUMULATOR
* R6-> PO NTER TO OLD DECB

*

*

*

*

USES DSECTS: AVWKTABL, XXI OBLOCK
USES MACRCS: WRI TE, CHECK

**--> ENTRY: XXXXFI NI CLOSE ALL DCB'S WHICH ARE OPEN.
*, XXXXFI' NI USES THE OPEN CLOSE PARM LI ST BU LT DURI NG EXECUTI ON.
*, TO CLOSE ALL DCB'S CURRENTLY OPEN. USES 1 EXECUTE TYPE OPEN..

ASPLMB42- 70

DOS GENERATI ONS HAVE NO OPEN CLOSE LI ST, SO A CHECK MUST BE
MADE TO SEE WHI CH DCB' S MJUST BE CLOSED.
ENTRY CONDI TI ONS
R11= @ AJOBCON DUMWY SECTI ON
EXI T CONDI TI ONS
AJI O - FLAGS ARE ALL ZERCED QUT.
USES DSECTS: AJOBCON
USES MACROS: $RETURN, $SAVE, CLOSE

L B R R

**-.-> ENTRY: XXXXINIT NI TI AL OPEN FOR READER/ PRINTER

* OPENS PRI NTER, SOURCE CARD RDR. | NI TI ALI ZES XXI OCPTR, WHI CH .
* ALWAYS HAS BEG NNI NG @ OF OPEN/ CLOSE PARM LI ST (OS CGEN. ONLY).
* ENTRY CONDI TI ONS .
*. Rll= @AJOBCON DUMMY SECTI ON

*. AJIO- FLAGS IN AJOBCON ARE ALL ZERCS.

* EXI'T CONDI TlI ONS

* AJl OSO, AJI OPR FLAGGED W TH AJI OPEN | F DCB' S OPEN) D PROPERLY.

* USES MACROS: $RETURN, $SAVE, OPEN

* USES DSECT: AJOBCON

*

**--> ENTRY: XXXXPNCH PUNCH A CARD, OPENING IF REQURED
*. CALLED BY $PNCH MACRO TO PUNCH A CARD (DDNAME FTO7F001). |IF .
* THE DCB XXPNDCB CANNOT BE OPENED, OR | F NOPUNCH WAS USED I N

* THE USER PARM FI ELD, THE CARD | S PRI NTED (DDNAME FTO6F001)

*, WTH ' CARD-->'" PRECEDI NG IT TO NOTE USAGE.

*. ENTRY CONDI TI ONS - SAME AS ENTRY XXXXREAD

* EXI T CONDI TI ONS

* CC& o0 NORVAL RETURN, CARD WAS PUNCHED OR RPI NTED

* CcCc 1 RECORD LIM T HAS BEEN EXCEEDED, CARD PUNCHED ANYWAY

* USES DSECTS: AJOBCON, | HADCB, XI OBLOCK

* USES MACROS: OPEN, PUT

*

**-.-> ENTRY: XXXXPRNT PRINT ONE LINE OF QUTPUT.
* CALLED BY $PRNT MACRO TO PRINT 1 LINE, USI NG DDNAME FTO6F001. .
*. ENTRY CONDI TI ONS - SAME AS ENTRY XXXXREAD

*. EXIT CONDI TIONS - SAME AS XXXXPNCH

* USES DSECTS: AJOBCON, | HADCB, XI OBLOCK

* USES MACRCS: PUT

*

**_-> ENTRY: XXXXREAD READ 1 CARD AT USER EXECUTION TIME.
*. OPENS CARD READER(DDNAME FTO5F001) | F NOT ALREADY OPEN, OR

*, USES OPEN READER (DDNAME FTOOF001) TO GET 1 CARD, USING THE .
*, COVMON CCDE SECTI ON XXI OGET. | F NOCDATA WAS SPECI FI ED I N THE .
*. USER PARM FI ELD, NO OPEN WLL BE DONE FOR FTO5F001, BUT

*. SYSIN WLL BE USED | NSTEAD. CALLED BY $READ MACRO

*. ENTRY CONDI TI ONS

*. RO = @/ 0O AREA VWHERE DATA TO BE READ/ WRI TTEN

*. Rl4= @ XI OBLOCK CREATED BY THE CALLI NG XI ONR MACRO.

*. R15= ENTRY PO NT ADDRESS

*. EXI T CONDI TI ONS

* CC= 0 NORVAL RETURN, CARD WAS READ AND TRANSFERRED TO USER

* CC= 1 ENDFI LE ON READER. | F ASSI ST JCL, SAVED I N AJOBCON.

*

USES MACROCS: GET, OPEN

ASPLMB42- 71

*, USES DSECTS: AJOBCON, XI OBLOCK

*

**_-> ENTRY: XXXXSORC READ A CARD DURI NG ASSEMBLY TIME.
* CALLED BY MACRO $SORC TO READ CARD FOR ASSEMBLER, USI NG
*, ALREADY OPEN DCB (DDNAME SYSIN) .

*, ENTRY CONDI TI ONS - SAME AS THOSE FOR ENTRY XXXXREAD.

*. EXIT CONDI TIONS - SAME AS THOSE FOR ENTRY XXXXREAD.

*. USES DSECTS: AJOBCON, XI OBLOCK
* USES MACROS: GET
*

ASPLM642- 72

*..> CSECT: XXXXSNAP DEBUGG NG OUTPUT, COMPLETION DUVP . . .
THI' S MODULE PROVI DES ALL REG STER AND STORAGE DUMPI NG FOR
DEBUGGI NG PURPCSES, BOTH FOR | NTERNAL ASSI ST DEBUGG NG, AND
FOR USER PROGRAMS DURI NG EXECUTION. | T I'S CALLED BY THE
MACRO XSNAP (XDUMP PSEUDO- | NSTRUCTI ON FOR USER PROGRAME) ,
AND PRODUCES A USER DUMP OR DEBUGG NG OUPUT | F THE CALLI NG
XSNAP SPECI FI ED A BI NARY VALUE FOR OPERAND T(3).

ENTRY CONDI TI ONS

SEE XSNAP CONTROL BLOCK AND POl NTERS ON ENTRY TO XSNAP COWVENTS.

ALSO, | F SPECI AL ASSI ST OUTPUT IS DESIRED |.E. T(3) IS USED, THE

WORD | N XXSRGSAV WHERE REGI STER R10 WAS SAVED MUST CONTAI N THE

ADDRESS OF THE ECONTROL DUMMY SECTI ON, WHI CH SUPPLI ES VALUES
EXI T CONDI TI ONS

ALL REG STERS AND CONDI TI ON CODE ARE RESTORED TO ORI Gl NAL VALUES

AFTER EXECUTI ON OF THE | NSTRUCTI ON AT THE RETURN POl NT.

USES DSECTS: ECONTROL, XXSNAPC
USES MACROS: $PRNT(|F &SDEBUG=1), OPEN, PUT(| F&$DEBUG=0)
NAVES: XX---- - - , ALL NAMES ADDED FOR ASSI ST: XXAS-- - -

L R T S R N B N R B S

**-.-> ENTRY: XXXXSNI N XXXXSNAP | NI TI ALI ZATI ON ENTRY

* CALLED TO I NI TI ALI ZE ' XSNAP - CALL' NUMBER TO 1 (IN CASE
*. BATCHED RUNS ARE USED) .

*. ENTRY CONDI TI ONS

* R14= RETURN ADDRESS

* R15= @ XXXXSNI N

*

ASPLM642- 73

**__.> CSECT: XXXXSPI E | NTERRUPT CONTROL & COMMUNI CATI ONS

* SCOTT A SMTH - FALL 1971.

* THIS IS CALLED ONLY FROM THE MACRO EXPANSION OF $SPIE. IT
* CONTAI NS THE ONLY MACROS THAT CAUSE LI NKAGE TO BE SET UP

* BETWEEN THE SUPERVI SOR AND THE EXI T ROUTI NE FOR | NTERRUPT
* HANDLI NG. THE | NI TI AL COVMUNI CATI ONS ARE NEVER MADE UNLESS
* AT LEAST ONE $SPIE |'S EXPANDED. ONLY ONE ACTUAL SUPERVI SOR
* CALL |'S NECESSARY. ALL OTHER $SPI E EXPANSI ONS JUST MANI -
* PULATE THE CONTROL BLOCKS GENERATED BY THAT EXPANSI ON.

* **NOTE** XXXXSPI E CONTAI NS THE ONLY OCCURENCES OF THE

* MACROS SPIE (0S) OR STXI T (DOS)

* NAVES: XSP--- - -

*

* THI S ENTRY HANDLES THE UPDATING OF THE PO NTER TO THE

* ACTI VE XSPI EBLK .

* ENTRY CONDI TI ONS

* Rl = @NBEWY CREATED ACTI VE XSPI EBLK (OR RESTORED XSPI EBLK)

* Rl4= RETURN ADDRESS

* RI5= @ENTRY POl NT

* EXI T CONDI TI ONS

*. Rl = @LAST PREVI OUS ACTI VE XSPI EBLK

* = 0, IF NO PREVIOUS XSPI EBLK' S EXI STED

*

*%__> | NSUB: XXXXSPEX | NTERRUPT EXI T ROUTI NE

**__> ENTRY: XXXXSPI N | NI TI ALl ZATI ON OF | NTERRUPT COVMUNI CATI ONS.
* THE ONLY NECESSARY SPI E(OS) OR STXI T(DOS) |S EXECUTED HERE .
* TO CATCH ALL | NTERRUPTS AND TO REQUEST THE RETURN OF CONTROL .
* TO THE SAVE EXI T ROUTI NE HANDLER. AS SUBSEQUENT $SPIE' S

* ARE | SSUED, NO SVC |'S NEEDED, JUST AN ANALYSI S OF THE

* STATUS OF THE ACTI VE CONTROL BLOCK(XSPI EBLK) BY THE COVMON
* | NTERRUPT EXI T ROUTI NE.

* USES MACROS: SPI E(0S) OR STXI T(DOS), $SAVE, SRETURN

* ENTRY CONDI TI ONS
* Rl4= RETURN ADDRESS
* RL5= @ENTRY PO NT
*

ASPLM560- 1
APPENDI X VI. | NTERNAL DEBUGGE NG Al DS

ASSI ST contains various debugging facilities to be used by any
progranmer maki ng nodifications to the ASSI ST source program A nacro
is provided for dunping registers and storage, conditional on flags
set at execution tine. Programtracing nay be perforned, again
dependi ng on execution-tine flag settings. Debugging flags may be set
by supplying a value to the DEBUG option of the user PARMfield,
during either pass of the assenbly, or during user program execution
Thi s appendi x supplies the progranmrer with the information needed to
create a debug version of ASSIST, make use of the debug code al ready
in the ASSI ST program and possibly wite additional debuggi ng code of
hi s own.

A. GENERATI ON OF DEBUG CCDE

Al'l debug code currently provided in ASSIST is controlled by a
singl e SET synbol, &$DEBUG as fol |l ows:

&$DEBUG=1 No debuggi ng code is generated anywhere in ASSI ST.

&$DEBUG=0 Debuggi ng code is generated in nmany sections of
ASSI ST, depending on | ocal requirenents.

Al'l debuggi ng output is done using the macro XSNAP, which incl udes
performng tests on data flags before actually producing output. This
macro is used by itself in sonme places, and is also called to perform
tracing functions on entry and exit to some subroutines. The usage of
this macro is described in a separate witeup. Briefly, it prints
| abel ed out put which can show the registers, any nunber of storage
areas, and information such as the PSWwhere it was called from
wi t hout destroying any registers or the condition code. |f needed,
it can make execution-tinme tests to determ ne whether or not out put
shoul d be printed.

It is suggested that any additional debuggi ng code added to
ASSI ST shoul d be nade conditional on the value of &DEBUG or at
| east upon another SET variable, in order to maintain a source
programw th [arge quantities of debugging code in it which can be
conpl etely suppressed for creation of a production system

ASPLM660- 2
B. SET SYMBOLS AND MACROS USED | N DEBUGG NG

This section describes debuggi ng SET synbols, nacros, and the
i nteractions anong them

1. SET SYMBOLS
The following are also listed in Appendix II.

a. &DEBUG
This symbol is set by the nmacro $DBG and al ways contains a
character string which is a hexadecimal self-defining term It is

used by the XSNAP nacro called by the XSRTR macro in a TMinstruction.

b. &TRACE

This synbol gives the type of tracing to be perforned at
subroutine entry/exit. It is set by $DBG nmacro, and contains one of
the foll owi ng three val ues:

NO no trace code will be generated by an XSRTR nacro

* the XSNAP called by XSRTR will do nothing but print a
nessage noting entry/exit of the given routine
SNAP the XSNAP will not only print the nmessage as above, but

will also print out the GP registers.
2. MACROS
a. $DBG

This macro is called to set the val ues of &DEBUG and &TRACE, which
will be used as set by all $SAVE and $RETURN macro calls, until the
next $DBG call is made. In nost cases, $DBGis called one tine at the
begi nni ng of each control section, to set the debuggi ng output desired
during that section.

b. $RETURN

This is the extended RETURN macro for exiting froma subroutine.
It calls macro XRETURN, supplying certain defaults. XRETURN calls
XSRTR macro, which generates any tracing code required.

c. $SAVE
This is an extended SAVE macro, which calls XSAVE nmacro, which
then calls XSRTR to generate any trace code required.

d. XSNAP

This is the primary debugging nacro, and is a slightly nodified
versi on of the XSNAP nmacro which can be used by anyone witing in
assenbler. It is used both by itself, and as an inner macro for XSRTR
to generate all debugging code. It generates a call to the nodul e
XXXXSNAP to perform any output formatting and printing. Al XSNAP
calls in a section of code can be nullified by setting the GBLB
variable &XSNAPST to 1, with the exception of the XSNAP calls which
have a value in the third position of the T= operand. These calls
are always generated, since they are used to produce conpl etion dunps
or user execution-tine debuggi ng dunps.

e. XSRTR

This macro is called to create trace code for $SAVE or $RETURN
and is a nodified version of the normal one. No trace code is created
i f &DEBUG=1, or if &TRACE=NO. The XSNAP call it creates performs a
TM AVDEBUG, &DEBUG , so it is currently used only in the assenbler.

ASPLM560- 3
C. | NDI VI DUAL SECTI ON DEBUGGE NG CODE DESCRI PTI ON
For each mmjor portion of the ASSIST program this section notes

t he debug fl ags used, the methods by which they are set, how they are
tested, and every place in each control section where debuggi ng out put

may be produced. It also notes any other debuggi ng code present.
Pl ease recall that none of the code nentioned below is generated if
&DEBUG is set to 1, i.e., a pure production program |f necessary,

&$DEBUG can be changed at various places, in order to produce debug
code in sone sections but not in others. However, the current version
does not do this anywhere.

1. MAIN CONTROL AND SERVI CE SUBPROGRAMS
a. FLAG BYTE: AJODEBUG (in AJOBCON dsect)

b. FLAG SETTING supply the followi ng option in the PARMfield on
the EXEC card of a user program

DEBUG=deci mal #

A debug version of APARMS accepts this option, and stores the |last byte
of the nunber's value into the byte AJODEBUG for |ater use.

c. FLAG TESTING various XSNAP calls perform Test under Mask
instructions referencing AJODEBUG to determine if output should be
produced or not, i.e. use operand |F=(AJODEBUG O, mask, TM

d. DEBUG OUTPUT LOCATIONS: the following lists all debug output
code in this section of ASSIST, describing |ocations, test val ues used,
and out put produced.

CSECT MASK VALUE(HEX) OUTPUT LABEL/ LOCATI OV QUTPUT PRODUCED/ PURPCSE

ASSI ST 08 " AFTER Tl ME/ RECORDS SET'
i mediately after PARMfield has been printed,
near | abel ASPNP.
prints registers, all of AJOBCON control bl ock
This is used to show the status of all overall job
control values, after time and records limts have
been set, and PARM field scanned.

ASSI ST 02 ' ECONTROL BEFORE EXECUT
after ECONTROL section has been conpletely filled
in before user programis executed, between |abels
ASEXECAL and ASDUMPCL.
prints registers, all of ECONTROL dunmmy secti on.
This is used to show conpl ete status of user
program ,just before execution.

ASSI ST 04 " USER STORAGE BEFORE EXEC(FAKE ADDR)'
after ECONTROL section has been conpl eted, just
after just previous output code.
prints all of user storage, giving the addresses
as they are in the assenbly |isting.
This is used to make sure the assenbl er has done
assenbly and | oadi ng the user program properly.

ASPLM660- 4

CSECT MASK VALUE(DEC) OUTPUT LABEL/ LOCATI ON/ OUTPUT PRODUCED/ PURPOSE

APARVS

APARMS

01

01

" APMSCAN
after | abel APMSCAN, i.e., just before scanning
of next option in the PARMfield is done.
prints registers, section of AJOBCON from AJOPARVA
to AJI OFLAG sufficient to get flags set here.
This is used to check scanning and conversion
code insi de APARMS.

" APFOUND
after label APFOUND, i.e., after an option has bee
scanned and found in the table of |egal options.
prints registers, and the APCBLK of the option
found (APCBLK contains the option nane and fl ags).
This is used to check table | ookup, and nake sure
all registers are set correctly.

e. ADDI TI ONAL DEBUG CODE (PRODUCES NO OUTPUT)

The following lists code which is conditional on &DEBUG but
produces no output. Note that sone of this code nmay be absolutely
necessary to allow setting of debug fl ags.

CSECT

ASSI ST

APARVS

XXXXSNAP

PURPOSE/ LOCATI ON/ DESCRI PTI ON

Zero menory.

just before label ASJINIT, after the single |arge
bl ock of menory has been obtained for a workarea.

Zer oes wor karea, which is useful for debugging, and
al so mnimzes size of any dump caused.

Decode DEBUG= PARM opti on.

in individual paraneter field analysis section, between
| abel s APADUMP and APAI.

stores value given by DEBUG= into AJODEBUG byte.
NOTE this section is required, since this is the
only code which sets flag AJODEBUG

Produce separate debug node out put.

consi sts of the foll ow ng sections:
just before XXOPENOK: opens a DCB
after XXPRINT: perfornms PUT of a |ine.
after XXCOUNT: provides separate DCB for XXXXSNAP

The extra code here permits the progranmer to obtain
i nternal debuggi ng code on a separate output device
if he so desires. |If &DEBUG=1 (i.e., production node),
XXXXSNAP uses the $PRNT macro (XXXXPRNT csect) to
produce its output, which neans that its output will be
i nterspersed with any output produced by the rest of the
system If this is not desired, a separate DD card and
DCB can thus be used to provi de separate output.

ASPLM560- 5
2. THE ASSEMBLER
a. FLAG BYTE: AVDEBUG (i n AVWAKTABL dummy section)

b. FLAG SETTING this flag is given a val ue when a speci al opcode
is encountered in the user program during either the first or second
pass of the assenmbly. This opcode is as foll ows:

DEBUG pass#, sel f-defining term

pass# is either 1 or 2, signifying during which pass AVDEBUG
should be set. It will have no effect on the other pass.
sel f-defining termis the value to which AVDEBUG i s set.

The actual setting of AVDEBUG is done either in IBASML or in
| DASM2, for pass 1 or 2 respectively, and takes effect imrediately.
Note that this requires code in | BASML, | DASM2, and OPCODl1 to be
created as debug version nodules, as noted in section e.

c. FLAG TESTI NG various XSNAP macros perform Test under Mask
instructions referencing AVDEBUG In addition, many of the $SAVE and
$RETURN macros used eventual |y generate XSNAP calls also. |n npst
cases, each csect uses only one or two masks for testing. The XSNAP
operand used in this case is | F=(AVDEBUG, O, mask, TM

d. DEBUG OUTPUT LOCATIONS: the following lists the control sections
of the assenbl er which may produce debuggi ng out put. Two types of
entries are given. |If a nask and node are given, this neans that
each entry and exit point in that csect uses the given nmask to test
AVDEBUG, and produces the output described (see &DEBUG and &TRACE)

If the information given applies only to certain entry/exit points,
this is noted, and it is assumed that entries/exits not nentioned
print nothing. The second type of description gives the mask used in
an XSNAP interior to the control section. The information here is
simlar to that given in section C. 1.d. of this Appendi x.

CSECT MASK(HEX), TRACE MODE OUTPUT LABEL/ LOCATI ON/ QUTPUT PRODUCELY
PURPOSE (for interior XSNAP' s)

BROPS2 AO, SNAP all entries/exits
CACONS A0, SNAP all entries/exits
CBCONS AO, SNAP all entries/exits
CCCONS A0, SNAP all entries/exits
CDECNS AO, SNAP all entries/exits
CFHCNS AO, SNAP all entries/exits
CNDTL2 A0, SNAP entry/exit

CODTL1 A0, SNAP entry/exit

ASPLM660- 6

CSECT MASK(HEX), TRACE MODE QUTPUT LABEL/ LOCATI ON/ OQUTPUT PRODUCEDY
PURPOSE (for interior XSNAP' s)

CPCONS AO, SNAP all entries/exits
CVCONS A0, SNAP all entries/exits
CXCONS AO, SNAP all entries/exits
CZCONS AO, SNAP all entries/exits
ERRORS 80, SNAP (at entry point ERRTAG onl y-others none)
ESDOPRS 90, * all entries/exits
EVALUT BO, SNAP entry/exit
BO " EVCNEXTA

just after |abel EVCNEXTA

prints registers, internal variable
storage from EVOPRS to EVALQ which
i ncl udes operator, term and sign code/
id stacks, plus paren count and nunber of
terns renmai ning all owed.

This is used to obtain the conplete
status of the expression evaluation just
after the current rowin the transition
tabl e has been set, but before the next
character(s) are exam ned

BO " EVDIJUMP

just before | abel EVDIUMP

prints contents of GP registers, address
of code section to be executed next.

This is done just before a junmp is done
to an individual processing code section
or error routine, depending on the current
state(row of transition table) and the
type of synbol or delimter just found.

BO ' EVFRCOEX
just after |abel EVFRCOEX in arithnetic
conput ati on section.
prints GP registers.
This shows all results of a single
eval uation of two term values and the
singl e operator for them

ASPLM660- 7

CSECT MASK(HEX), TRACE MODE QUTPUT LABEL/ LOCATI ON/ QUTPUT PRODUCEDLY
PURPOSE (for interior XSNAP' s)

| AMOP1 90, * entry/exit
| BASML 90, * entry/exit
| CMOP2 90, * entry/exit
| DASM2 90, * entry/exit
| NCARD 90, * entry/exit
LTOPRS AQ, * all entries/exit
84 (no particular |abel)
in section LTDWP1, just after |abe
LTD1E.

prints GP registers, contents of 1
literal entry (LTLENTRY).

This occurs during pass 1, when the
| ocations are being assigned in order to
all literals in the current literal pool
It can be used to make sure sections
LTENT1 and LTDMP1l are working correctly.

84 (no particular | abel)

in mddle of section LTGET2.

prints registers, contents of the
literal table entry (LTLENTRY) which has
just been requested by calling program

This is used to make sure that the
address of each literal table entry has
been saved correctly, and that LTCET2 is
retrieving literal information properly.

MOCON1 90, * entry/exit

88 (no particular |abel)

bet ween | abel s MONOLB2 and MOPUT, i.e.
just before UTPUT1 is called to save al
record bl ocks for the current source
st at ement .

prints two bl ocks of storage: 12 bytes
of the RCODBLK created by either | AMOPL or
| BASML, and the section of the assenbler
control table from AVLOCNTR t o AVDWORKL.

Thi s XSNAP di spl ays the npst inportant
pass | variables of the assenbler, and
al so all record blocks before they are
saved. As such, it checks nany sections
of pass | processing code for correctness.

CSECT MASK(HEX) , TRACE MODE

MPCONO

MICON2

OoPCOD1

QUTPUT

SCANRS

SDTERM

SYMOPS

UTOPRS

, NO
90, *
90, *
CO, SNAP

Q, *

ASPLM660- 8

OUTPUT LABEL/ LOCATI QV OQUTPUT PRODUCEDY
PURPOSE (for interior XSNAP' s)

no tracing is done at al

entry/exit

entry/exit

entry/exit of QU NT1, entry of QUTPT2

all other entries/exits

note this nodul e shoul d have sone XSNAP' s added

90, *
90, SNAP
90, *
CO, SNAP

Co, *

all entries/exits
all entries/exits
all entries/exits
exit from UTGET2, entry to UTPUT2

all other entries/exits

ASPLM660- 9
e. ADDI TI ONAL DEBUG CCDE (PRODUCES NO QOUTPUT)

The following |ists code sections of the assenbler which only exist
i f &DEBUG=0, but produce no output.

CSECT PURPOSE/ LOCATI ON/ DESCRI PTI ON

| BASML Provi de executi on of DEBUG opcode during Pass I.
Code section between sections |BDROP and | BDC
Junp table entry after IBAJUWP in constant area
The code section saves the pass# used in the DEBUG
conmand, evaluates the self-defining term and saves

it also. |If the pass#=1, it stores the value into
AVDEBUG
| DASM2 Provi de execution of DEBUG opcode during Pass I1I.

Code section between sections IDDC and 1 DDS, jump table
entry after IDAJUMP, in constant area.

The code section sets AVDEBUG to the val ue given,
if the DEBUG opcode used a pass# of 2.

| NPUT1 Zero record bl ocks.
I mredi ately after entry to | NCARD.
Zeroes 256 bytes in AVWKTABL which will contain
all the record bl ocks for next statenent, except for
RCODBLK. This ai ds debuggi ng of | NCARD, and ot her
sections of code which set values in record bl ocks.

OPCOD1 Provi de debug conmands.

In opcode table, two places:
after |abel OP4AD (DI AG .
after |abel OP5D (DEBUG) .

These pernit the assenbler to recogni ze two speci al
conmmands for debugging. DEBUG is used to set AVDEBUG
in the assenbler. DIAGis used to set a flag during
user program execution. These are absolutely necessary
for doing debug work on the assenbler and interpreter,
since no other ways exist to set the flags.

ASPLM662- 1

3. THE | NTERPRETER
a. FLAG BYTE: ECFLAR (in ECONTRCOL dsect)

b. FLAG SETTING ECFLA®R is set by executing a D agnose
instruction, i.e., an Sl instruction with opcode X 83'. The immediate
field of the instruction is noved to ECFLAG2. Note that this opcode
can be generated by use of the DI AG nmenoni ¢ assenbl ed by a debug
versi on of the assenbler (see section C 2.e. of this Appendix), or the
opcode can be coded in hexadeci mal and obtai ned wi thout using a debug
version of the assenbler. However, the flag setting code only exists
in a debug version of the interpreter.

c. FLAG TESTING various XSNAP's use a TMinstruction to test the
flag, e.g., the XSNAP operand used is |F=(ECFLAGR, O nask, TM

d. DEBUG OUTPUT LOCATIONS: the following lists all debug output
| ocations in the current version of the interpreter.

CSECT MASK VALUE(HEX) OUTPUT LABEL/ LOCATI OV QUTPUT PRODUCED/ PURPCSE

EXECUT 20

80

40

' SPIE

just after SPIE exit |abel EXSPIEXT.

prints GP registers, 32 bytes of the PIE (Program
Interrrupt Element) supplied to the exit routine
by the operating system

This is used in debugging the interpreter to nake
sure that interrupts are handl ed properly, and are
occurring where they shoul d.

" PRI MARY FETCH

after comon code to fetch next instruction and
do prelimnary decoding, i.e., between |abels
EXFEXENT and EXEXLEN.

prints GP registers, contents of new ECSTACKD
bl ock for instruction just fetched, and section of
ECONTRCOL from ECFPREGS to ECI LI MP, which shows
simul ated user registers and nost execution flag
flag vari abl es.

Thi s XSNAP essentially displays the conplete
status of the sinulated user nachine, with the
exception of the user storage area.

' USER AREA
just before | abel EXEXLEN, i.e., before the
i nstruction which has just been fetched is executed.
prints entire contents of user's sinulated
storage area, with real nenory addresses, which
are not normally the ones shown on the user assenbly
listing.
This XSNAP i s used for debugging instructions
whi ch nodify nenory in any way. For instance,
this can be useful if new SVC routines or |/0O
routines are added to the interpreter.

ASPLM662- 2
e. ADDI TI ONAL DEBUG CCDE (PRODUCES NO QOUTPUT)

The foll owi ng sections of code, while not producing output, are
required for use in debug nbde, and are conditional on &SDEBUG

CSECT PURPOSE/ LOCATI ON/ DESCRI PTI ON

EXECUT Test for Diagnose instruction.
just after |abel EXOCl, which is |abel taken when an
illegal operation code is discovered.
This checks illegal opcode for being X 83 . If it is,
control passes to EXDI AG which executes the instruction

Execut e Di agnose instruction.

after section |abeled EXSI, i.e., after other Sl
instruction interpretation code.

Moves i mredi ate field of the instruction to ECFLAGR2.
Note that this and the code just described make up the
only way to set ECFLAR at the current tine, and so are
requi red for debuggi ng usage.

4. THE REPLACE MONI TOR

The Repl ace Monitor currently contains no enbedded debug code.
>< NUMBER SEQL=67000000, NEWL=67000100, | NCR=100, | NSERT=YES
ASPLM570- 1

APPENDI X VIl . SYSTEM RESOURCE REQUI REMENTS, JOB CONTROL LANGUAGE
A. SYSTEM RESOURCE REQUI REMENTS

This section describes the systemresource requirenents needed to
run ASSIST 1.1. Certain of these requirenments nay be necessary only to
supply particular facilities inside ASSI ST.

1. MEMORY
a. PROGRAM CODE AND PREALLOCATED DATA AREAS

A full ASSIST supporting all possible options allowed requires |ess
than 64K bytes, and generally would require |l ess, since nmany options
are provi ded which would not be used at a particular installation. A
reasonably useful version can be generated to use 28K bytes or less, if
the large options are omtted and &OPTMS=0 for instance. Under OS/ 360,
it is possible to use OVERLAY techniques to reduce the size to approx
20- 22K, although this is not recomended. A list of the preallocated
storage and data required by various facilities is listed in part C

B. 1/ 0O MODULES

ASS| ST uses GET/PUT |ocate for unit record devices
see Appendix I1. &I OUNIT.

c. DYNAM C STORAGE AREA
During initialization, ASSIST acquires the |argest single block of

storage remaining inits region, up to a given linmt (512K), and then
returns the FREE= value to the operating system The size of this block

determ nes the size of the |argest program which can be run under
ASSIST. The limting factor is the quantity of storage used in this

dynam ¢ work area during assenbly. For the synbol table, litera
constant table, and tenporary storage of record bl ocks between Pass |
and Pass Il of assenbly, an average of 50-90 bytes per statenment is
required.

d. TOTAL MEMORY

Reasonabl e prograns of several hundred statenents should easily
run in a total nenory space of 64K. For npbst begi nning student
prograns, 44K should suffice, even with a 30K ASSI ST system

ASPLM70- 2
2. | NPUT/ QUTPUT DEVI CES
a. CARD READER or equival ent device.

b. LINE PRINTER or equivalent device. A width of 133 characters
(including carriage control) is desirable, but a 121 character w dth
is sufficient for all output except a few headi ngs and nessages. Both
assenbly output and conpletion dunps require no nore than 121 bytes.

c. CARD PUNCH or equival ent device. (optional)

d. | NTERMEDI ATE DISK UTILITY I /O Allows the assenbly of much
| arger programs. Set &BUFNO to 3 or 4 and &$BLEN to 3524 or 7044
(half or full track buffers +4) for nost efficient operation.

3. OPERATI NG SYSTEM SERVI CES

ASSI ST has been witten nainly for use on | BM S/ 360 conputer
systens under OS/ 360. However, the system services dependent on
0S/ 360 have in general been utilized only in a few sections of code
i nside ASSI ST, so that only a few sections of code need be changed in
order to run ASSI ST under a different operating system The follow ng
sections describe the system services used and what substitutes coul d
be used instead, if necessary.

a. STORAGE ALLOCATI ON/ DEALLOCATI ON

ASSI ST acquires storage using the GETMAIN nacro and deal | ocates it
using the FREEMAIN macro. |f these or their equivalents are not
avai |l abl e, a | arge workarea on a doubl eword boundary may be added at
the end of the csect ASSIST, and code in two places in that csect
nodified to just use this static workarea instead of acquiring it
dynam cally. (Only 1 each of FREEMAIN and GETMAI N are used).

b. | NPUT/ QUTPUT SERVI CES

ASSI ST uses QSAM GET/ PUT logic, with the foll ow ng macros:
OPEN, CLCSE, CGET, PUT, DCB. Al input/output code is contained in the
control section XXXXIOCO so any nodifications required can be nmade
there without affecting any ot her code.

c. TIM NG SERVI CES

ASSI ST may use the STIMER and TTI MER nacros, both for conputing
time interval statistics, and for controlling user program execution
time. Al such uses are in one section (ASTIMR## - ASTIMER) of the
control section ASSI ST, and can be changed if needed. |If no timng is
desired, or if none is available, ASSIST can be generated to use none
(i.e., &TIMER=0). See Appendix VIII for details.

d. PROGRAM | NTERRUPT SERVI CES

The assenbl er part of ASSIST (csect MPCONO) uses the SPIE nmacro
to trap certain (rare) interrupts). The interpreter (csect EXECUT)
definitely requires the use of a SPIE or equivalent to trap any
interrupt occurring during programinterpretation, and its program
| ogi ¢ depends very much on this service being available. It is a
definite requirenent that it be possible to trap an interrupt, and
be able to change the | ocati on where execution is resuned afterwards.

After version 1.2/ Al, only 1 SPIE will exist, thus easing conversion.

ASPLM670- 3

B. JOB CONTROL LANGUAGE

To use ASSI ST as described in the Introductory User's Manual,
the foll owi ng catal ogued procedure should be added to the PROCLIB
of an OS/ 360 system

/ | DATA EXEC PGVEASSI ST

/1 FTC6F001 DD DDNANME=I NPUT (omt if running only BATCH jobs).
// FTO6F001 DD SYSQUT=A

// FTO7F0O01 DD SYSOUT=B

// FTO8BF0O01 DD UNI T=SYSDA, SPACE=(CYL, (10, 1)), DI SP=(NEW DELETE)
// STEPLI B DD DSN=li brary, UNI T=uni t, VOL=SER=vol , DI SP=SHR

where library, unit, and vol describe the library containing the
ASSI ST | oad nodule, if not |located in LINKLIB.

The ddnames above were chosen for conpatibility with FORTRAN,
and especially with WATFOR. If different ones are desired, the ddnanes
in the DCB's in the control section XXXXI OCO of ASSI ST nust be changed.
In addition, the BATCH control cards ($JOB, $ENTRY) were chosen for
conpatibility with WATFIV BATCH car ds.

ASPLM670- 4
C. OPTIONAL FACI LITY STORAGE REQUI REMENTS

The following |ist gives the approxi mate storage requirenents of
a nunber of the optional facilities provided by ASSIST. |If possible,
experiments should be done with the distribution version of the ASSI ST
programto see the effects of the various options allowed, and then any
of those not desired can be renoved, thus saving tine, and probably
nore i nportant, storage. In sone cases, the presence or absence of
various options interacts, but the differences in storage are mnor.

The options are listed in al phabetical order by the set variable
val ue used to include the given option.

&$CVPRS=1 330 bytes. also requires 4048 bytes in dynanmic area if
CVWPRS option actually used .

&$COVNT>0 300 bytes (approx) (conment counting option COVNT)

&$DATARD=1 250 bytes (allows 2nd card reader for data only).

&$DECSA=1 42 bytes (assenmbly of decimal instructions)

&$DECK=1 250 bytes (object deck punch - DECK)

&$Dl SKU 600 bytes (disk utility internedi ate storage)

&$FLOTA=1 600 bytes (assenbly of floating point instructions)

&$FLOTAX=1 21 bytes (assenbl e extended floating point instructions,
in addition to 600 bytes for &BFLOTA=1)

&$FLOTE=1 150 bytes (execution of floating point instructions)

&$HEXI =1 600 bytes (approx) (allows execution of XHEXI)

&$HEXO=1 160 bytes (approx) (allows exectuion of XHEXO

&$KP26=1 420 bytes (allows 026 keypunch option - KP=26)

&$MACRCS=1 approxi mately 15-16K(rmacro processor)

&$0BJI N=1 1100 bytes (object deck loading - OBJIN)

&$PAGE=1

&$PRI VOP=1

&$PUNCH=1

&$P370=1

&$P370A-1

&$RECORD=2
&$RELCOC=1

&$REPL=1
&$REPL=2

&$S370=1
&$S370=2
&$S370A-1

&$TI MER=1
&$TI MER=2

ASPLM670- 4A

380 bytes (page counting, control)

100 bytes + nore code to be witten (this anmount allows
privileged operations to be assenbl ed, not executed).

220 bytes (unl ess &DATARD=1, in which case only requires
160 bytes beyond that given above). (allows PUNCH)

12 bytes (interpret S/ 370 privileged operation codes, in
addition to that for &$PRIVOP)

57 bytes (assenbly of S/ 370 privil eged operations, in
addition to that for &$PRI VOP)

170 bytes beyond ot her options.
70 bytes (allows RELOC option)

3600 bytes (also requires &RELOC=1)
4000 bytes (al so requires &BRELOC=1)

308 bytes (interpret S/370's with 370 hardware)
788 bytes (interpret S/370's with only 360 instructions)
85 bytes (assenbly of S/ 370 non-privileged instructions)

570 bytes
660 bytes

(allows T=, TD=, TX= options)
(extra flexibility in timng)

NOTE the val ue of &BOPTMS can al so be set, and should be set to
Oif there is a lack of storage, or perhaps 3 in nedi um cases.

ASPLM670-5
D. USI NG ASSI ST EFFECTI VELY | N DI FFERENT ENVI RONMENTS

ASS| ST HAS BEEN DESI GNED TO FACI LI TATE I TS USAGE I N A NUMBER OF
QUI TE DI FFERENT ENVI RONMVENTS, RANG NG FROM RUNNI NG A BATCH OF SMALL
STUDENT PROGRAMS AS THE ONLY PROBLEM PROGRAM I N A SVALL COWPUTER, TO
RUNNI NG LARGE NUMBERS OF RUNS AS ONE OF A GROUP OF PROCESSCORS
OPERATI NG UNDER A SWAPPI NG MONI TOCR I N A DEDI CATED REG ON OF A LARGE
MACHI NE. I N GENERAL, ASSI ST CAN BE USED EFFECTI VELY USI NG VERY
M NI MAL RESOURCES (SUCH AS 40K OF STORAGE IN A 65K MACHI NE W TH ON- LI NE
CARD READER AND PRI NTER), BUT CAN TAKE ADVANTACE OF EXTRA SPACE AND |/ O
DEVI CES TO OFFER MANY USEFUL OPTI ONAL FACI LI Tl ES. THI' S SECTI ON
BRI EFLY DESCRI BES SOVE OF THE VARI QUS WAYS ASSI ST CAN BE RUN, | N ORDER
OF | NCREASI NG RESCURCE REQUI REMENTS, FI NI SHING W TH A DESCRI PTI ON OF
I TS USAGE AT PENN STATE UNI VERSI TY AND SOVE OF OQUR EXPERI ENCES WTH I T.

M NI VAL SYSTEM (SUCH AS A 360/30 W TH 64K BYTES, UNDER DOS/ 360,
OR A 360/40 OR /50 RUNNI NG UNDER OS/ 360 - PCP). (**NOTE** A DOS
VERSI ON OF ASSI ST IS | N PREPARATI ON AS OF 08/23/71, AND SHOULD BE
AVAI LABLE IN A FEW MONTHS). FOR THI' S CASE, ASSI ST SHOULD BE STRI PPED
DO TO A M NI VAL SI ZE PROGRAM VHI CH CAN ASSEMBLE AND | NTERPRET SMALL
STUDENT PROGRAMS, USING 1 CARD READER AND 1 PRI NTER, W TH $JOB BATCH
CONTROL CARDS. TYPI CALLY, A NUMBER OF JOBS WOULD BE COLLECTED, THEN
FED TO ASSI ST I N A BATCH AT DESI RED | NTERVALS. ALL OF THE MORE EXOTIC
FACI LI TITES CAN BE OM TTED, THUS SAVI NG SPACE. | T MAY EVEN BE ADVI SABLE
TO OM T FLOATI NG PO NT | NSTRUCTI ONS FROM THE ASSEMBLER, |F SPACE IS
REALLY CRI Tl CAL.

NORVAL JOB ON MEDI UM TO LARCGE SYSTEM ASSI ST MAY SI MPLY BE ADDED
TO A SYSTEM LI BRARY, AND USED EI THER TO PROCESS SEPARATELY- SUBM TTED
I NDI VI DUAL JOBS, OR TO PROCESS COLLECTED BATCHS OF RUNS. | F 100-200K
OF STORAGE | S AVAI LABLE, ALMOST ANY STUDENT- TYPE PROGRAM CAN BE RUN,
AND A NUMBER OF THE OPTI ONAL FACI LI TIES CAN BE | NCLUDED, THUS EXTENDI NG
THE RANGE OF PROGRAM TYPES WHI CH CAN USE ASSI ST. EVEN IF RUN AS
A PROCESSOR FOR SI NGLE JOBS, ASSI ST'S LOW OVERHEAD COVPARED W TH
THE SYSTEM ASSEMBLERS CAN SAVE PROCESSI NG Tl ME, BESI DES PRI NTI NG MJCH
LESS OQUTPUT AND G VI NG BETTER DI AGNCSTI CS.

ASPLM670- 7

LARGE SYSTEM FAST- TURNAROUND PRCCESSOR UNDER A SWAPPI NG MONI TOR.

ASSI ST'S SMALL SIZE AND H GH SPEED MAKE | T USEFUL FOR PROCESSI NG
LARCGE NUMBERS OF JOBS AS ONE OF SEVERAL PROCESSCORS WHI CH ARE SWAPPED I N
AND OQUT OF A DEDI CATED REG ON I N A LARGE COWUTER, THUS G VI NG STUDENT
PROGRAMMVERS VERY FAST TURNAROUND AT A LOW COST/ RUN. THI S TYPE OF
USAGE ACCOUNTS FOR THE BULK OF ASSI ST UTI LI ZATI ON AT PENN STATE. WE
G VE AN OVERVI EW OF THE SYSTEM AT PENN STATE, AS CF 08/23/71.

THE MAIN COMPUTER SYSTEM USED IS A 360/67, POSSESSI NG 1 MEGABYTE
OF PROCESSCOR STORAGE, WTH 2 MEGABYTES OF 8 M CROSECOND CYCLE LCS, WTH
2 2301 DRUMS FOR RESI DENCE OF HEAVI LY- USED PROGRAMS (| NCLUDI NG ASSI ST),
PLUS ADDI TI ONAL PERI PHERAL CGEAR. A SEPARATE 360/ 50 (512K PROCESSOR
CORE, 1 MEGABYTE LCS, SYSTEMS RESI DENCE ON 2319 DI SK) IS AVAI LABLE
AT SOVE TI MES FOR THE BATCH TERM NAL HANDLI NG DESCRI BED BELOW

BRI EFLY, WH LE RUNS MAY BE SUBM TTED AT THE COVPUTER CENTER | TSELF,
THE SYSTEM APPEARS ORI ENTED TO THE HANDLI NG OF REMOTE BATCH TERM NALS.
AT LEAST 13 READER/ PRI NTER/ PUNCH TERM NALS (SUCH AS | BM 2780 OR DCS CP-4
TYPE DEVI CES) ARE LOCATED ElI THER AT THE MAI N CAMPUS CR AT COMMONWEALTH
CAMPUSES SPREAD ACROSS THE STATE OF PENNSYLVANI A, I N ADDI TION TO SI X
360/ 20" S OF VARYI NG CAPACI Tl ES. I N PARTI CUALR, FOUR OF THESE ARE
DEDI CATED TO SHORT- JOB- FAST- TURNARCUND REMOTE STATI ONS ON CAMPUS, VHERE
STUDENTS SUBM T THEI R OAN JOBS AND OBTAI N THE OUTPUT ALMOST | MVEDI ATELY,
GENERALLY BEI NG HELD UP ONLY BY THE PRI NTER SPEED. THE SI ZE OF THE JOBS
IS LIMTED TO 600 OQUTPUT RECORDS AND ElI THER 5 SECONDS TOTAL TI ME ON THE
/67 OR 20 SECONDS ON THE /50.

RUNNI NG UNDER THE OPERATI NG SYSTEM (OS- WT W TH A HI GHLY- MCODI FI ED
VERSI ON OF HASP) AS ONE LONG JOB IS A SPECI AL MONI TOR PROGRAM (THE RPSS
MONI TOR) . TH S PROGRAM WRI TTEN BY ROYCE JONES OF THE PSU COVPUTER
CENTER STAFF, ALLOAS EACH JOB SUBM TTED TO BE PROCESSED BY THE
APPROPRI ATE ONE OF APPROXI MATELY HALF A DOZEN PROGRAMS, VHI CH ARE LOADED
I NTO MEMORY WWHEN NEEDED. TYPI CALLY 75 TO 80 PER CENT OF THE JOBS
ARE RUN BY A PSU- MODI FI ED VERSI ON OF WATERLOO UNI VERSI TY' S WATFI V
COWPI LER, 10 TO 15 PER CENT ARE FOR ASSI ST, 5 TO 10 PER CENT FOR
CORNELL' S PL/ C, AND THE REMAI NDER FOR VARI QUS OF THE OTHER PROCESSORS
AVAI LABLE, WHI CH | NCLUDE A LARGE STATI STI CAL PACKAGE STATPAC, A LISP
I NTERPRETER, A TURI NG MACHI NE SI MULATOR TUTOR , AND SEVERAL OTHERS.
DUE TO THE LOWM OVERHEAD METHOD OF HANDLI NG PRCDUCED, LARCGE NUMBERS OF
JOBS CAN BE RUN AT RELATI VELY LOW COST PER JOB, AND ENOUGH PROCESSORS
ARE OFFERED TO HANDLE A CGREAT DEAL OF COWPUTER | NSTRUCTI ON. THE FAST
TURNAROUND JOB CATEGORY APPEARS VALUABLE NOT ONLY FOR | NSTRUCI TON BUT
FOR RESEARCH, AND HAS COME TO BE USED QUI TE HEAVI LY. FOR EXAMPLE,

A TOTAL OF 5000-7000 JOBS RUN I N A DAY IS PROBABLY TYPI CAL, W TH 8000-
9000 OR MORE JOBS OCCURRI NG DURI NG BUSY PERI ODS. OF THSE, USUALLY ALL
BUT ABCQUT 2000 PER DAY ARE OF THE FAST- TURNAROUND JOB CATEGCORY TYPE.

ASPLM670- 6

I N ADDI TI ON TO THE FAST- TURNAROUND MODE OF RUNNI NG, ASSI ST IS OF
COURSE AVAI LABLE AS A SEPARATE PROGRAM FOR USE WHEN A PROCGRAM EXCEEDS
THE LIM TS DESCRI BED ABOVE. | N GENERAL, WE FI ND THAT STUDENTS W LL PUT
N MUJCH EFFORT TO KEEP USI NG THE FAST- TURNAROCUND FACI LI TIES, FOR EXAMPLE
THEY CANNOT NORMALLY ASSEMBLE AND RUN A 1200 CARD PROGRAM BUT MANAGE
TO DO SO BY ASSEMBLI NG | T UNDER CMPRS (OR RUNNI NG TWO ASSEMBLI ES, EACH
W TH HALF OF THE LI STI NG OFF), THEN RUNNI NG THE PROGRAM W TH THE ENTI RE
LI STI NG TURNED OFF, SAVING ALL RECORDS FOR EXECUTION. IT IS THUS STILL
POSSI BLE TO RUN A PROGRAM THI'S SIZE IN THE G VEN LIMTS.

IN ADDI TION TO ACCOUNTI NG FOR 95 PER CENT OR MORE OF THE RUNS MADE

IN OQUR FI RST ASSEMBLER COURSE, ASSI ST IS USED FOR A FAI R AMOUNT OF
DEBUGG NG I N THE SYSTEMS COURSE WHI CH FOLLOWS, AND |'S ALSO USED I N THE
DATA STRUCTURES COURSE WHEN APPROPRI ATE. THE SYSTEMS COURSE ALSO MAKES
USE OF THE REPLACE MONI TOR FACI LI TY FOR AN ASSI GNVENT OR TWO, AND THE
OBJECT DECK LOADER HAS EVEN BEEN USED BY A GRADUATE LEVEL COWPI LER
COURSE TO EXECUTE OBJECT CODE FROM STUDENT-WRI TTEN COWPI LERS CREATED
USI NG THE XPL SYSTEM VARl QUS PRQJIECTS I N THE CMPSC DEPARTMENT

HAVE ALSO MADE USE OF ASSI ST, | NCLUDI NG A FAI RLY EXTENSI VE THEOREM
UNEXPECTED) USES HAVE BEEN FOUND FOR ASSI ST' S DEBUGG NG FEATURES
PROBABLY THE MOST UNUSUAL PROGRAM RUN WAS ONE VWHI CH REQUI RED COVPLETE
ADDRESSI| NG CHECKI NG, AND WAS THUS RUN UNDER ASSI ST, EVEN THOUGH | T THUS
RESULTED I N A TOTAL EXECUTI ON TI ME OF 2000 SECONDS ON THE / 67.

ASSI ST WAS FI RST USED BEGQ NNI NG SPRI NG TERM 1970, AND SI NCE THEN
HAS PROCESSED AT LEAST 50000 JOBS . THE AVERAGE RUN TI MES FOR THE JOBS
FOR THE BEG NNI NG COMPUTER SCI ENCE COURSES HAVE GENERALLY BEEN | N THE
RANGE OF 1 TO 2.7 SECONDS OF CPU TI ME (67).
ASPLM580- 1

APPENDI X VI11. TIME, RECORDS, AND PACGES CONTROL

The ability to set limts on and nonitor tine usage and output is
especi ally necessary for any programintended for student usage. ASSIST
provides a | arge nunber of different ways to handl e such control, in
order to allow system planners the maxi num possiblity for tailoring a
version of ASSIST to |ocal requirenents.

ASSI ST can be generated to maintain conplete control over the tine
used in any part of a user's run, over the nunber of output |ines
lines printed and cards punched, and over the nunber of pages printed.
Flexibility is provided in three major ways:

SYSTEM GENERATI ON OPTI ONS al | ow the planner to select only those
types of control he desires. Three separate |levels of tinmer contro
are allowed (&TIMER=0, 1, 2). In the first case, no tinmng is done at
all, thus saving space and execution tinme. 1In this case, the I = option
can be used to Iimt the number of instructions executed by a user
program thus limting |oops at a very low cost in facilities needed.
The second option provides conplete tiner control over each separate
phase of a job, and third option adds even nore flexibility when running
under another control programwhich is already performing timng checks.
In essence, this allows the user to get as much tine as he actually has,
wi thout requiring himto specify a val ue.

Two distinct versions of output record control are available, i.e.
&PRECORD= 0 or 1, or 2. ASSIST al ways counts output records and never
will exceed the limts given, but the last option allows a function |ike

&$TI MER=2 which permits ASSIST to query the operating systemto
determ ne the actual rem aning records, again renoving a val ue which
nust be supplied by the user otherw se.

Page control (&$PAGE=1) pernits conplete control over the nunber
of pages of output allowed by any phase of a run, and is of course
desirable at any installation which performs accounting and control on
t he nunber of pages.

MULTI PLE OPTIONS allow flexiblity in specifying the values used to
performcontrol. Each of the three areas has at |east 3 paraneters
associated with it, and are set up in such a way as to all ow vari ous
ef fects, depending on the val ues given.

MULTI PLE OPTI ON SOURCES pernit values to be specified wherever it
is nmost convenient to do so, allowing for both limts and defaults. The
par amet er analysis routine (APARMS) is conpletely table-driven, and has
many provisions for future nodifications and additions. The lint and
default values are gathered in one place in the program (ASSI ST data
area), and can be easily nodified to run with different default val ues
or limt values for nunerical options (ex: maki ng BATCH t he default).

ASPLM680- 2
A. TIME, RECCORDS, PAGES CONTROL ALGORI THM

(The reader should be famliar with PART Ill. of the USER S GU DE,
whi ch describes the effects to the user of the al gorithns used).

In addition to the instruction count remaining counter, used by
EXECUT while interpreting a user program up to three other counters are
mai nt ai ned by the program one for each of the three areas.

A tinme remaining value is maintained using the hardware tiner, and
the STIMER and TTI MER nmacos, or equivalent. The tinmer is manipul ated
only in csect ASSIST, in the internal subroutine (1NSUB) ASTIMR##, which
is conposed of a nunber of processing code sections, one for each
point during a job where the tiner nmust be set or tested.

A records remaining count is always kept, regardless of the option
used to generate ASSIST. For each phase of the program it is set by
a particular one of several sections of an ASSI ST csect | NSUB call ed
ASRECL##. It is then decrenented by 1 every tine aline is printed or
a card punched (csect XXXXI OCO - entries XXXXPRNT, XXXXPNCH). |If the
count becones negative, the nodul e stops produci ng output and returns
this indication to the calling program (which is sufficient to make any
of the existing nodules stop their execution at that point).

The page control code actually has two counters of its own. A
lines remaining in the current page counter is decrenented by XXXXPRNT
every time a line is printed, and when it becones zero, ta pages left
counter is decremented. When the |atter beconmes zero, the same action
is taken as when the record count becones negative. The Nunmber of |ines
per page is given by the L= paraneter, which is set by APARMS. The
val ues of lines remaining and pages renai ning are set by sections of
ASSI ST csect | NSUB ASPAGE##.

The actions required at any stage of the program are thus done by
appropriate sections of the I NSUBs ASTI MR##, ASRECL##, and ASPACE##,
some or all of which may exist, depending on |ocal requirenents. In
general, at any place in the main control part of csect ASSIST at which
a change of status is required, 1 to 3 calls are nade to the sections of
the three I NSUBs havi ng correspondi ng nunbers. The organi zation | ends
itself to easy nodification, since the value-setting code is definitely
i sol ated and wel | - mar ked.

ASPLM580- 3

The basic al gorithmconmmmon to all three areas may now be outlined
as follows:

1. COWUTE VALUES FOR | NDI VI DUAL PARAMETERS. This is done as
described in PART Ill of the USER S GUIDE, and the conputati on done by
APARNS.

2. SET INNITIAL LIMT VALUES CORRESPONDI NG TO T=, R=, and P=. The
limts thus set hold for the entire run (or $JOB run, if BATCH), and
cannot be exceeded, regardl ess of the other values. |F &TIMER=2, the
actual tine remaining will be obtained fromthe operating system and
used if it is less than a user-supplied T= option, or if no T= value was
given on either the invoking PARMfield or $JOB card. A simlar action
can be done for record counting if &RECORD=2. The |ines remaining
count is set to O, in order to trigger a new page for the ASSI ST header.
An STIMER (if available) is set to the given value. **NOTE** these
actions are coded as the '04' entries of the | NSUBs.

3. PRINT HEADERS AND DO | NI TI AL PHASE. The ASSI ST header is
printed, with a PARMfield or $JOB card, then either assenbly begi ns or
a user object deck is |loaded. Any timer runout or output excession
qui ckly term nates processing by the nodule in control, the main program
ASSI ST obtains control fairly soon, and either term nates conpletely or
flushes to the next $JOB

4. SET VALUE FOR USER EXECUTI ON. Assuning that the user program
is permitted to execute, limts are set for it (INSUB entries '16').
First, temporary val ues are conmputed, by taking the m nimum of the
val ue remaining fromthe previous setting (T=, etc), and the val ue
specified for execution plus dunp (TX=, RX=, PX=). For each existing
remai ning counter, the value is then set to the temporary val ue m nus
t he dunp value (TD=, RD=, PD=), and execution initiated.

This process in effect allows the user to reserve sone portion of
his tinme and output to be saved for a dunp, w thout exceeding either
the total limt or limt for execution plus dunp together.

If any limt is exceeded during user execution, it is termnated
i medi atel y.

5. SET VALUES FOR DUWP LIMTS. After user execution terminates for
any reason, the values reserved by the 'D paraneters are added back
to the remaining counters. Thus, if a user consunmed all of the tine
up to the tenporary linmt, he still will have the TD= val ue saved for
a dunp. On the other hand, if he still had tine left, he will be able
to use it for his dunp if he needs it. |If TD (or RD or PD) =0, he can
use all of the 'X option values for his execution, useful for a
debugged program desiring maxi mum ouput and running tine. These
actions are acconplished by I NSUB sections |abeled '20'.

ASPLM680- 4
B. RECOMMENDED OPTI ONS AND MODI FI CATI ON METHODS

In general, there probably exists some conbi nation of val ues for
the default and limt values for all of the control values which wll
be satisfactory for a given installation. The follow ng describes a
nunber of possible goals which can be obtai ned without changing the
ASSI ST program | ogi c.

TOTAL LIMTS ARE ONLY | MPORTANT VALUES. In this case, set the
total limt values to the deisred nmaxi num val ues, set the default val ues
as desired, then set the 'X values equal to the corresponding tota
val ues (SEE APPENDI X Il for the SET variabl es involved, and the ASSYSGEN
witeup for nodification procedure). Set the 'D |imt values to the
total limt values, and the defaults to appropriate values for the nodel
conput er being used. W suggest that reasonabl e val ues are those which
permit the user to see the first part of a dunp (i.e., RD=20-25, PD=1
TD= machi ne dependent), at |east for default val ues.

ASSEMBLY USAGE UNI MPORTANT, USER EXECUTI ON TO BE MONI TORED. In

this case, the total limts and default values should be set to very
| arge values, and only the 'X and 'D options given appropriate
values. Thus, the total linits are in essence ignored.

| NFORMATI ON AVAI LABLE FROM OPERATI NG SYSTEM (OPTI ON TYPES 2).
In this case, set all the values except the 'D values very high, since

ASSIST will use limts obtained fromthe operating system
NO TI M NG AVAI LABLE (OR DESIRED). In this case, the linmt and
default settings for |I= should be carefully coded, since this will be

the only execution limt on the user program (unless it | oops while
produci ng output, in which case records lints can stop it).

RUNNI NG ASSI ST UNDER A BATCH MONI TOR (see section D of APPENDI X
VIl). |In sone cases, ASSIST nmay be desired to be able to run on a
system both from normal batch jobs and from specially-submtted runs,
usually of linmted tinme and output, and possible running under a
swappi ng control nonitor (such as the Penn State Computer Center's
RPSS MONI TOR or the WATERLOO Conputing Centre's XMONITOR). In this
case, the Iimt and default values inside ASSI ST should generally be
set high, since the particular nonitor calling it can pass it whatever
addi ti onal values are desired. |If the extra values are concatenated to
any user PARM field, individual user prograns cannot escape whatever
addi ti onal control the nonitor chooses to perform do to the nature of
PARM handl i ng nodul e APARNVS.

Several of the possible changes are particularly easy to make:

ALLOW USER DUMPS TO BE AS LONG AS DESIRED. Set all the D val ues
to zero, then change the '20' parts of the INSUBs included to place
very large values in the remining counters.

BEG N USER EXECUTI ON OR USER DUMP ON NEW PAGE. The entries
ASPAGE16 and ASPAGE20 do not reset the lines renmaining counter, thus
giving the user the benefit of the doubt on partial pages. |If these
two phases shoul d begin on new pages, the desired section may just
reset lines remaining counter (AJOLREM to zero.

