S

IBM Systems Reference Library

IBM System/360 Operating System
Sort/Merge

Program Number 3605S-SM-023

This publication describes the use of the IBM
Systemn/360 Operating System Sort/Merge Program.
It discusses:

Program capabilities.

Sorting and merging techniques.

Sort/merge program control statements.
Intermediate storage requirements.

Job control language requirements.

Program initiation.

Program modification.

Efficient program use.

Standard operating system collating sequence;
Sort/merge program messages.

The program has generalized sorting and merging
capabilities that can be tailored to the needs of
a particular installation and application.

File No. S360-33
GC28-6543-5

0S

Sixth Edition (November 1968)

This is a major revision of, and obsoletes C28-6543-4 and
Technical Newsletter N28-2323. This revision adds discus-
sions of sequence distribution techniques in general,
balanced direct access sequence distribution technique on the
2314, spanned records for sort input and output, blocked
input on SYSIN, advanced checkpoint/restart, and standard
System/360 Operating System collating sequence. A flow chart
describing how to set up a simple sort or merge is also
included. Other changes to the text, and small changes to
illustrations, are indicated by a vertical line to the left
of the change; changed or added illustrations are denoted by
the symbol e to the left of the caption.

This edition applies to release 17 of the IBM System/360
Operating System, and to all subsequent releases until other-
wise indicated in new editions or Technical Newsletters.
Changes are continually being made to the specifications
herein; before using this publication in connection with the
operation of IBM systems, consult the latest IBM 360 SRL New-
sletter, Form N20-0360, for the editions that are applicable
and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
readers' comments. If the form has been removed, comments
may be addressed to IBM Nordic Laboratory, Technical Com-
munications, Vesslevagen 3, Lidingo, Sweden.

© Copyright International Business Machines Corporation 1965,1966,1967,1968

This publication is a guide for users of
the System/360 Operating System Sort/Merge
program. It contains a general description
of the program and specific information
about control statement formats, program
operation, the inclusion of user-written
routines, efficient use of the program, and
program generated messages. Merging tech-
niques used by the program are briefly
described. General information about basic
sorting and merging methods is contained in
the IBM publication Sorting Techniques,
Form C20-1639.

ORGANIZATION AND USE OF THIS PUBLICATION

If you want to set up a simple sort or
merge quickly, fold out the chart in Appen-
dix A at the back of the book and refer to
Section 2 for details as you follow the
chart. Eventually, however, you should
plan to read the entire publication, which
is organized as follows:

Section 1: Sorts/Merge Program -— This sec-
tion describes sorting and merging specifi-
cations, control fields, sorting and merg-
ing techniques used by the program, and
error correction facilities.

Section 2: How to Use Sort/Merge -- This
section is divided into four main topics:
"Defining the Sort or Merge" which
describes the format and use of sort/merge
control statements and contains a number of
complete sorting and merging examples;
"Determining Intermediate Storage Require-
ments" which describes how to calculate the
amount of intermediate storage for a given
application; "Required Job Control Language
Statements"™ which describes the JOB, EXEC,
and DD statements necessary for sort/merge
execution and contains a number of complete
JCL and sort/merge statement examples; and
"Invoking the Sort/Merge Program"™ which
describes initiating sort/merge via the
system input stream and via a macro
instruction in another program.

Section 3: Program Modification -- This
section describes sort/merge program exits
and the requirements for user-written rou-
tines that use them. Users who do not
include their own routines to modify rec-
ords or handle errors during sort/merge
program execution can skip this section.

Preface

Section 4: Efficient Program Use -- This
section describes the factors that contri-
bute to efficient use of the sort/merge
program.

Appendixes —-- These sections contain a flow
chart summary of how to use the sort/merge
program, a summary of considerations for
MVT users, the standard operating system
collating sequence, and sort/merge
messages.

PREREQUISITE PUBLICATIONS

IBM System/360 Operating System:

Introduction, Form C28-6534

Concepts and Facilities, Form C28-6535

SUGGESTED READING

IBM System/360 Operating System:

Sort/Merge Timing Estimates, Form C28-
6662 for information about sorting
speeds with a variety of work devices,
input data set sizes, main storage
sizes, blocking factors, etc.

Supervisor and Data Management Services,
Form C28-6646 for descriptions of link-
age conventions, program and task man-
agement, data organization and access
features, and the use of macro
instructions.

Job control lLangquage, Form C28-6539 for
a thorough discussion of job control
language statements.

Checkpoint/Restart Planning Guide, Form
Cc28-6708.,

The following additional publications
are referred to in text:

IBM System/360 Operating System:

Linkage Editor, Form C28-6538

Storage Estimates, Form C28-6551

Supervisor and Data Management Macro
Instructions, Form C28-6647

System Generation, Form C28-6554

~—

S

Sort/Merge Confrgl Statements ~==@=0 0 @—_— —_—— — — — — — — — ___>.-
Intermediate Storage Assignment =~ @0 00— — — — — — — — — — _.>-
JCL Statements —-——————————-—_.)-
Examples ._________.______>.-

Initiating Sort/Merge S

Modifying the Program —_—

Using the Program Efficiently —_— e — __>.-
Preparing a Sort/Merge Job -- Flowchart — — — — — — — — — .__.>.-

Operating System Collating Sequence —_— e

Sorf/Merge Messages _———_——_——_——— — — —

INTRODUCTION . « « = . o - .
Relationship to the Operatlng System

‘Minimum Machine Requirements . . . «

Main Storage Requirements . . .« .
Determining Region Size
Intermediate Storage Requirements

SECTION 1: SORT/MERGE PROGRAM
Control Fields . ¢« « o« o «
Sort Requirements . e« « « =«
Merge Requirements
Sorting Technique . . . « .« .
Sequence Distribution Techniques
Tape Techniques . « o« « « « =«
Direct Access Techniques . . .
Forcing a Technique
Error Correction Facilities . .
J/0 EXTOXS o o o o o o o o o @
Exceeding Intermediate Storage
Capacity v « o ¢ o o o o o o @

LI T)
s & 8 8 @&

e o @ & b e e @ e
¢ & & & & & o 8 2 s

SORT/MERGE

- .

SECTION 2: HOW TO USE THE
PROGRAM . . . - .
Defining the Sort or Merge
control Statement Format
Continuation Cards . .
Sort Control Statement .
Parameters « « « « o« o
Ooptions .« « v « -
SORT Statement Examples
Merge Control Statement .
Parameters « « o « « - o
MERGE Statement Examples
Record Control Statement . .
Parameters . « « . . . -
Defining Fixed-Length Records
Defining Variable-Length Records
RECORD Statement Examples . .
MODS Control Statement . . .
Parameters « « o« o« « e e o o
MODS Statement Examples .
END Control Statement
Control Statement Compatibility
Summary of Sort/Merge Control
Statements « « « ¢ o o o 4 ¢ e 0 . e
Sort/Merge Control Statement Examples
Example 1 - Simple Sort
Example 2 -- Simple Merge . . .
Example 3 -- Sorting With
Modification Routines
Example 4 - Merging With
Modification Routines .
Example 5 - Sort
Example 6 - Sort
Example 7 - Sort
Determining Intermediate Storage
Requirements « « ¢« o « o o « « «
Intermediate Storage Devices . . .

@ & & @ s s .
i s & 8 s o & &

@ % & % s % e 3 @
R

-
-
-
.
-
-
-
-
-
-
-
-
-

-
-
.
-

s 8 & @

¢ 8 & & s 8 s s F

s o 8

T 8 & & 4 8 s 0 s s

4 & & & & 4 8 3 ¥ 8 & 8 & b & & & s b 2 2 .

Contents

9 Intermediate Storage Space
9 Requirements . « « o o o o o o o «
10 Tape Intermediate Storage
10 2311, 2301, and 2314 (Balanced
10 Technique) Intermediate Storage .
10 Intermediate Storage Assignment
Example e o e o o o e
2314 (Crisscross Technlque)
13 Intermediate Storage . . « . < . .
13 Intermediate Storage Assignment
14 Formulas —— SUMMAYY « « « « « « « « o
14 Number of Tapes Required for
15 Intermediate Storage (n)
16 Total Number of Tracks Required for
16 Direct Access Intermediate Storage .
16 Job Control Language for Sort/Merge .
16 JOB Statement .« <« <« ¢ o ¢ ¢ o o o @
18 EXEC Statement « « o« o« ¢ o o o « o«
18 PARM Field Options . « « ¢« « o <« «
DD Statements .« « ¢ o o« « « o o o o
18 Required DD Statement Parameters . .
SORTIN DD Statement . . . « e
SORTINO1 -- SORTIN16 DD Statements
SORTWKO01 —- SORTWK32 DD Statements
SORTOUT DD Statement . « <« « « « &
19 SORTMODS DD Statement . « . - . .«
19 SORTCKPT DD Statement
20 Job Control Language Statements for
21 Sort/Merge —— SUNMAYY o « « o « = « o
22~>] JCL and Sort/Merge Statement Examples
22 Example 1 —— SOrt .« o« o o o « « «
24 Example 2 —— Sort . « <« < ¢ < o .
26 ~ Example 3 —— Merge « « « « « « o« «
27 Example 4 —— Sort . <« <« < <« <« o .
28 Example 5 —— Sort . <« <« . . < . .
28 Example 6 —— Sort . . <« < <« <« o« .
29 Example 7 —— Sort . . <« . < . 4 &
29 Example 8 —= SOrt .« « « « ¢ < o
30 Example 9 -— Merge « « « « « « « «
30 Example 10 -- Simple Merge
31 Example 11 -- Sort <« . . .
32 Example 12 —— SOort « .« « « « o« o
32 Initiating Sort/Merge . . . <« <« « +
33 Using the System Input Stream . . .
35 Cataloged Procedure SORT . . « «
35 Cataloged Procedure SORTD«
Using ATTACH, LINK or XCTL . . . -
36 Supplying the Needed DD Statements
38~ Passing Parameters to the Sort . .
38 Tape SOXtiNg w « « o « o o o « = =
38 Disk sorting « « <o ¢ ¢ o o o o o o
Considerations When Using XCTL . .
38 Example 1 < @ ¢« o ¢ o o« ¢« o o o «
ExXample 2 . o o o o © o « o o o @
39 Further Considerations When Using
40 ATTACH, LINK, or XCTL . « « <« « «
40
41 SECTION 3: PROGRAM MODIFICATION . . .
Program Description . . « . « « « «
41 Definition Phase . . « o .
41 o o

Optimization Phase . .
Equals Module . . .

-
-
-

¢ & 0

4 8 s 6 8 & 8 & i s s s o8

4 8 8 & 8 & & 4 6 & & a4 & s 8 0 s 0 0 8 0 s s 2 s e

42

43
43

4y

o~

Extract Module
Sort Phase « . .«
Intermediate Merge Phase
Final Merge Phase . . .

General Information . . .
Efficiency Considerations
Bypassing the Linkage Editor
Operating Considerations . .
Routines in the System Input
Linkage Considerations . . .

Linkage Examples

Assignment Component Exits (E11

E31) @ ¢ ¢ o e o 2 o e o o o

Running Component Exits . .
Record Change Exits (E15, E25

Exit E15

Exit E25

Exit E35
Nmax Exit (E16) .
Exits for Closing Data Sets (
E27, E37) . ¢ @ o 4 ¢ o o @
Read/Write Error Routines .

Read Error Exits (E18, E28,

Write Error Exits (E19, E29,

e s & & @
e & o & e

e 8 & @ & @9
@ & 8 0 @ s

tream

¢ o & 2 o o & s e
[22]
N

-
-
-
.
-
-
-
-
S
-
-

P E21,
E35)

- e

¢ o & @ o o o
o]
~

E17,

e e -

E38) - « 93
« E39) .

Control Field Modification Exit (E61)v 96

SECTION 4: EFFICIENT PROGRAM USE . . .101
Supplying Information to the Program . .101

Data Set Size . ¢ « o o o «

e e « w <101

Blocking Input Records . « . o . . .
Record Format - ..o
Intermediate Storage A551gnment o o
Assigning Direct Access Intermediate
Storage e« « « « ¢ o o o - . o
Assigning Tape Intermediate Storage

N

.101
.101
.101

.102
.103

Multiprogramming the Sort/Merge Program 103

System Generation Options and

Requirements . « o « o o « 4 © o o «
Limiting Main Storage . . .
Altering the Main Storage Allocatlon
Altering the Message Specification .

GLOSSARY @« « ¢ o o o © © = « o o o o

APPENDIX A: SUMMARY OF HOW TO USE THE
SORT/MERGE PROGRAM &« ¢ « « « « o = = =

APPENDIX B: CONSIDERATIONS FOR MVT

USERS == SUMMARY o « « « o o o =« « = =

Region SiZ€ ¢ @ @ o o o o « o o o o
Optional Characters For DD Names . .
Altering the Main Storage Allocation
Other . ¢ v & 4 6 6 o 6 o o o @ « =

APPENDIX C: STANDARD SYSTEM/360
OPERATING SYSTEM COLLATING SEQUENCE .

Appendix D: Sort/Merge Messages . . .

INAEX &« ¢ 2 o o o o @« © o o o o o °

.103

- 104

<104
-105

.107

-109

.113
.113
.113
.113
.113

.115
-117

«127 ~—

S

Figures

Figure 1.

sizes for Input and Output with
Fixed-Length or Variable-length

Records
Figure

-

2.

Figure 3.
Fields .
Figure 4.
Figure 5.
Figure 6.
Format
Tables
Table 1.

Estimated Maximum Record

Control Word With Five

Replacement Selection
Sorting Technique
Control Statement Example

Sequence Distribution

-

-

SORT Control Statement

-

¥ Technique Requirements .

Table

2.

Summary of DD Statement

.

Estimated Maximuvaecord
sizes for Input and Output with
Variable-Length Spanned Records (VRE)

Parameters Required by the Sort/Merge

Program

-

11

11
13

15
20

22

17

49

Illustrations

Figure 7. MERGE Control Statement
Format D T
Figure 8. RECORD Control Statement
Format

Figure 9. NODS Control Statement
Format e e o @ o o s = e o o s e s o
Figure 10. END Control Statement

Format e e o ® ® @ o © = e o ® @ °
Figure 11. Arrangement of Statements
for Sort/Merge Execution . e e e e e
Figure 12. Passing Parameters to th
Sort e @ o o o e @ ® ° o e e o e = =
Figure 13. Phase-level Flowchart . .
Figure 14. Summary of Functions
Permitted at Sort/Merge Program Exits

28
29
32
35
51

77
80

83

Introduction

This publication explains how to use the System/360 Operating System Sort/Merge
Program to fulfill the sorting and merging requirements of System/360 installa-
tions that use magnetic tape and direct access input and output devices.

The sort/merge program can arrange data sets into a predesignated order. The
program places the records of a data set in sequence according to the contents of
a control word which is contained in each record. The program is generalized to
perform a variety of sorts and merges. Because of this ability, the sort/merge
program can simplify many data processing applications that require the sequential
updating of previously created data sets.

Input to and output from the program can be any data set that consists of
fixed-length or variable-length, blocked or unblocked records (except U format)
and can be accessed by the queued sequential access method (QSAM). Any I/0 device
that operates with QSAM can be used for input and output.

The program uses sorting and merging techniques that take advantage of machine
configurations and data set sizes. These techniques are designed to provide effi-
cient operation for a great variety of sorts and merges. The technique used by
sort/merge depends upon information supplied to the program through control state-
ments which define the application to be performed. These statements can be sup-
plied to the program in the operating system input stream or as parameters passed
by another program.

User-written routines can operate in conjunction with the sort/merge program to
perform many functions during sort/merge execution. The program gives control to
user-written routines at various exits in the program. When they receive control,
the routines can insert, summarize, delete, and alter the records being sorted or
merged.

Relationship to the Operating System

The sort/merge program is part of the System/360 Operating System and operates
under the supervisory control of the operating syster control program. Sort/merge
execution must be initiated according to operating system conventions, and any
data sets used by the program must be defined according to operating system stan-
dards. At the user's option, the checkpoint and label checking (standard and non-
standard) facilities of the operating system can be used during a sort/merge pro-
gram execution. Information about operating system label checking facilities can
be found in the publication IBM System/360 Operatin; System: Supervisor and Data
Management Services, Form C28-66U46.

The sort/merge program also makes extensive use of the operating system data
management facilities. BAll data sets necessary for program operation must be
defined in data definition statements; these statements must be placed in the
operating system input stream with the job step that initiates sort/merge execu-
tion. DD statements are described in the publication IBM System/360 Operating
System: Job Control Lanquage, Form C28-6539.

The sort/merge program can be tailored to the needs of a particular installa-
tion when the operating system for that installation is generated.

Introduction 9

Minimum Machine Requirements

The sort/merge program requires:

e For main storage, a System/360 model that is large enough to use the operating
system and provide at least 15,500 bytes of main storage for sort/merge execu-
tion. (Sort/merge uses 12,000 bytes; system functions use 3,500 bytes.)

* At least one selector channel or one multiplexor channel.
e For intermediate storage, at least one IBM 2311 Disk Storage Drive, or one IBM

2301 Drum Storage Drive, or one drive of an IBM 2314 Direct Access Storage
Facility or three magnetic tape units.

MAIN STORAGE REQUIREMENTS

Sort/merge performance usually improves as the amount of main storage available to
the program increases. Approximately 44K bytes of main storage are required for
efficient operation. Refer to "Section 4: Efficient Program Use" for more infor-
mation about main storage requirements. .

Determining Region Size

Use the following formula to estimate the region size required when the sort/merge
program is run under MVT:

Region size = 1.2(sort size) + 8K

Sort size is the amount of main storage assigned to the sort/merge program at sys-
tem generation time. If the user overrides the SYSGEN value at execution time,
then the overriding value is used for sort size. The constant 1.2 provides for
space lost through fragmentation, and the additional 8K is used by the system.

If the formula yields a region size less than the minimum allowéd, use the
minimum. If calculated region size is not a multiple of 2K, round up to the near-
est 2K multiple.

INTERMEDIATE STORAGE REQUIREMENTS

The amount of intermediate storage needed to perform sorting applications depends
upon the size of the input data set. This storage may be allocated on either mag-
netic tape or direct access devices. The program needs at least three magnetic
tape units or one direct access device for intermediate storage.

The amount of main storage available to the sort/merge program affects the size
of records that the program can handle. Figure 1 shows the maximum record size
that the program will accept for a given amount of main storage when fixed- or
variable-length unspanned records are used. Figure 2 gives sizes for variable-
length spanned records. (Spanned records, also referred to as VRE records, are
records that can have fractional blocking factors such as one third, two and one
half, etc. Thus a record may "span" blocks and/or direct access tracks.)

Figures 1 and 2 assume that the minimum number of intermediate storage data
sets are assigned, and no control fields are to be extracted (placed in a work
area and modified by user-written routines). Minimum record size is 18 bytes.
Conditions such as control field extraction, or large numbers of intermediate
storage data sets require additional main storage. Since a work area is used for
VRE records, the available storage space for buffers and sorting is decreased and
therefore, the maximum record lengths for VRE records are somewhat smaller than
for unspanned records. :

10

A -

] T 1
| N Maximum Record Size for Input and Output Records |
| l ‘ i
| Main Storage | Intermediate Storage Device |
| Available to } T T T - |
| the Sort | | | | IBM 2314 Facility |
| | | | | (Bytes) |
| | Tape | IBM 2311 Disk | IBM 2301 Drum | T 4
| | (Bytes) | (Bytes) | (Bytes) | 3 workareas | 6 workareas |
i 4 i Il 1 [4
) L) 1) T T L] 1
|18K* (18,432) | 1,100 | 1,300 | 1,300 | 1,300 | - |
. 1 1] [l 1
1) 1]] T v |
44K (45,056) | 5,500 | 3,600 | 6,600 6,600 | 3,500 |
i 1 L 1 [l 3
L) T L}] 1]
|100K (102,400)| 14,900 | 3,600 1 18,000 | 7,272 | 7,272 |
L 1 L 1 1 1 i |
L] 1 Ll L] 1] 1 1
200K (and up) | 32,000 | 3,600 | 20,458 | 7,272 | 7,272 |
1(204,800) | | | | | |
% 1 1. 1 L 1 Jl
| *The value of K is 1,024 bytes. |
L . J
® Figure 1. Estimated Maximum Record Sizes for Input and Output with Fixed-Length

or Variable-length Records

] k)]
| | Maximum Record Size for Input and Output Records |
| F {
| Main Storage | Intermediate Storage Device

| Available to } T T T i
| the Ssort | | | | IBM 2314 Facility |
| | | . | | (Bytes) |
| | Tape | 1IBM 2311 Disk | IBM 2301 Drum. |} T 1
| | (Bytes) | (Bytes) | (Bytes) | 3 Workareas | 6 Workareas |
[i L 4 1 i 4
[} 1]] 1 T 1
|18K* (18,423) | 800 | 9200 | 1,100 | 900 | -— |
b } t + 4 {
|44k (45,056) | 4,600 | 3,600 | 5,100 | 5,100 3,100 |
[l 1 4 IR 4 i |
] Ll 1] L] ' 1
|100K (102,400)| 12,800 | 3,600 | 12,900 | 7,272 | 7,272 |
i 1 1 4 [1 d
L] R)] L) 1 1 1
] 200K (and up) | 27,400 | 3,600 | 20,458 | 7,272 | 7,272 |
1 (204,800) | | | | |
% 1 L A1 1 1 {
| *The value of K is 1,024 bytes. |
L J

e Figure 2. Estimated Maximum Record Sizes for Input and Output with Variable-

Length Spanned Records (VRE)

Introduction 11

Section 1: Sort/Merge Program

This section discusses control fields, sort and merge requirements, the sorting
technique used by sort/merge, the sort/merge sequence distribution techniques, and
error correction facilities.

Control Fields

Each record in a data set is sorted or merged on the basis of control information
contained in the record's control word. A control word, which can be up to 256
bytes long, has from 1 to 64 control fields. Control fields can overlap; the end
of one control field can share data with the beginning of another control field.
Figure 3 shows a control word with five control fields.

Confrol Word

Control Field 3

/

\
\

Control Field 1 — Major Control Field

Control Field 2

Control Field 4

e Figure 3. Control Word With Five Fields

Each control word, along with the record in which it appears, is sorted into
either ascending or descending order, using standard IBM System/360 collating
sequences.t

Nonstandard collating can be achieved without physically changing the control
fields. A user-written routine can modify one or more of the control fields each
time the sort/merge program collates a record. The modified control fields are
used for collating purposes only; they do not replace the fields in the records.
User—-written routines can be entered at sort/merge program exits. (These exits
and the requirements for user-written routines that use them are discussed in
"Section 3: Program Modification.")

The maximum control field lengths for the various control field data formats
accepted by the sort/merge program are:

* Character, fixed-point, or normalized floating point data —-- 1 through 256
bytes.
e Packed or zoned decimal data —-— 1 through 16 bytes.

e Binary data -- 1 bit through 256 bytes.

Control fields must be contained within the first 4,092 kytes of a record.

1The collating sequence for character data and binary data is absolute; that is,
character and binary fields are not interpreted as having signs. (Refer to Appen-
dix C: cCollating Sequence.) For packed decimal, zoned decimal, fixed point, and
normalized floating-point data, collating is algebraic; that is, each quantity is
interpreted as having an algebraic sign.

Section 1: Sort/Merge Program 13

Sort Requirements

Control fields for a sorting application are defined in a.SORT control statement
such as

SORT FIELDS=(10,30,3),FORMAT=CH

(described in "Defining the Sort or Merge" in Section 2). Input, output, and
intermediate storage data sets are defined on standard job control language DD
statements such as

//SORTOUT DD DSNAME=OUTPUT, UNIT=2400,DISP=(NEW, CATLG), X
7/ DCB=(RECFM=FB, LRECL=90, BLKSIZE=900)

(described in "Job Control Language for Sort/Merge™ in Section 2).

INPUT: Sort input can be a blocked or unblocked sequential data set containing
fixed- or variable-length records on any I/0 device that can be used with QSAM.

OUTPUT: Output from the sort can be a blocked or unblocked sequential data set
containing fixed- or variable-length records. The output device can be any device
that can be used with QSAM. It need not be related in any way to the input
device.

INTERMEDIATE STORAGE: All intermediate storage for a particular sort/merge appli-
cation must be on the same type of device. Up to 32 tape units, 17 modules of a
2314 storage facility, six 2311 disk storage drives, or six 2301 drum storage
devices can be used for intermediate storage. The amount of intermediate storage
required is based primarily on the size of the input data set. The amount of main
storage available to sort/merge is also a factor in determining intermediate
storage requirements. Intermediate storage is discussed in greater detail and
formulas for the amount of storage needed are given in "Determining Intermediate
Storage Requirements" in Section 2.

USER MODIFICATIONS: User-written routines can summarize, insert, delete, shorten,
lengthen, or otherwise alter records while they are being sorted. A detailed dis-
cussion of exits in the sort/merge program that permit control to be transferred
to user-written routines is given in "Section 3: Program Modification."

INVOKING THE SORT: Execution of the sort is initiated by control statements in
the operating system input stream, or by another program through the use of an
ATTACH, LINK, or XCTL macro instruction.

Merge Requirements

Control fields for a merging application are defined in a MERGE control statement
such as

MERGE FIELDS=(10,30,A),FORMAT=CH

(described in "Defining the Sort or Merge" in Section 2). Input and output data
sets are defined on standard job control language statements such as

//SORTINO1 DD DSNAME=MERGE1 , VOLUME=SER=000111,DISP=CLD, X
// LABEL=(,NL), UNIT=2400,DCB= (RECFM=FB, X
// LRECL=80, BLKSIZE=240)

(described in "Job Control Language for Sort/Merge"” in Section 2).

INPUT: Input to the merge can be up to 16 blocked or unblocked sequential data
sets containing fixed- or variable-length records. For a given application, all
records must be of the same format (only blocking factors may differ). The rec-
ords in the input data sets must be in proper sequence. The input devices must be
acceptable for use with QSAM.

14

OUTPUT: Output from the merge can be a blocked or unblocked sequential data set
containing fixed- or variable-length records. The output device must be accept-
able for use with QSAM. It need not be related in any way to the input device

type.

INTERMEDIATE STORAGE: Not needed for a merge-only operation.

USER MODIFICATION: The merge provides exits for user-written routines to sum-
marize, insert, delete, lengthen, shorten, or otherwise alter output records. A

detailed discussion of these exits and the requirements for routines that use them

is given in "Section 3: Program Modification."

INVOKING THE MERGE: Execution of the merge can only be initiated by control
statements in the operating system input stream.

Sorting Technique

The sort/merge program uses the replacement selection technique to sort records.
Figure 4 shows in general how this technique works.

Record Storage Area Input Buffer

§

5

o1 17

2 %
®

compare

23
. @ select

5

91 @ compare

Qutput Buffer

!
17 @ replace % 8 5 2

42

@ replace
@ select
compare

—>

23

42

replace

91

17

14 select - efc.

e Figure 4. Replacement Selection Sorting Technique

Section 1: Sort/Merge Program 15

The input data set is almost always too large to be brought into main storage
and sorted all at once. Instead, it is broken up into sections. Each section is
placed in sequence and stored on an intermediate storage device. The sorted sec- N
tions of the input data set are called sequences.

Sequence Distribution Techniques

The sort/merge program selects one of five sequence distribution techniques based
on information it has about a specific sorting application. The object of all
five techniques is to enable the intermediate merge phase of the program to com—
bine the many small sequences of records produced by the sort phase into a few
longer sequences. The number of sequences must be reduced to the point where the
final merge phase of the sort/merge program can combine them into a single
sequence in one pass.

TAPE TECHNIQUES

If the intermediate storage medium is tape, the program chooses the balanced tape
technique, the polyphase tape technique, or the oscillating tape technique.

DIRECT ACCESS TECHNIQUES

If the intermediate storage medium is direct access, the program chooses either N
the balanced direct access technique or the crisscross direct access technique.

Table 1 lists the basic requirements for the five sequence distribution tech-
niques and their major advantages and disadvantages.

FORCING A TECHNIQUE

If you find that for a particular sort/merge application, the sort/merge program
does not choose the most efficient technique, you can request sort to use another
technique. The program will comply if you provide enough main storage and work
areas to meet the technique's requirements (see Table 1). If the requirements
cannot be met, sort will use another technique rather than terminate the program.

Caution: Be extremely cautious about forcing a technique. The sort/merge program
attempts to choose the most efficient technique for a given application. If it is
forced to use another technique, performance is usually not as efficient.

Refer to the discussion of the EXEC statement PARM field in "Job Control Lan-
guage Statements for Sort/Merge" in Section 2 for information on how to force a
sequence distribution technique.

16

eTable 1. Sequence Distribution Technique Requirements
L] L) L) T] T 1
Technigne [Minimum	Maximum	Minimum	Maximum	Comments	
	Main Storage	Input	Intermediate	Intermediate	
	For Sort/		storage Areas	Storage Areas	
	Mexrge		Required	Permitted	
F : : { + t :					
Balanced 112,000 bytes	15 reels	2(x+1), where	32 tape units	Always used if more	
Tape			x is the num-		than three inter- i
BALN			ber of input		mediate storage tapes
			volumes		are available and
					input data set size is
					not specified or
]estimated.
; t + + : t 1					
Polyphase [12,000 bytes	l reel	3 reels	17 tape units	Always used if only	
Tape					three intermediate
POLY					storage tapes are
					available.
I + + $ t t 1					
0scillating	21,000 bytes	15 reels	x+2 or 4,	17 tape units	Input data set size
Tape			whichever is	must be given or	
joscL			greater, wherej	closely estimated. Thej	
			x is the num-		tape drive containing
			ber of input		SORTIN, the input data
			volumes		set cannot be assigned
					as an intermediate
					storage unit.
I % + ¢ { { 4					
Balanced 113,000 bytes		3 areas	6 areas	The only technique	
Direct				lavailable for the 2301}	
Access				land 2311. Always used	
BALN		No fixed			on 2314 when less than
]	maximum,			six work areas are	
		depends			available. Used on
	.	on			2314 when six areas
		available]		are available unless	
		main]CRCX is forced.
b + {storage } f + i					
Crisscross	24,000 bytes	and	6 areas	17 areas	Always used on 2314
Direct		available]		when more than six	
Access		inter—-			work areas are avail-
CRCX		mediate			able. Used on 2314
		storage			when six areas are
					available but must be
			I	forced. Not used on	
] 2301 or 2s11.	
L 1 1 1 L 1 J

Section 1: Sort/Merge Program 17

Error Correction Facilities

The sort/merge program provides exits where control can be transferred to user- S~
written error routines. (Refer to "Section 3: Program Modification.") These rou-
tines may be able to correct:

e I/0 errors that cannot be corrected by the operating system.
e Errors that arise because the input data set is larger than the intermediate
storage capacity estimated by the program for a given application.

I/0 ERRORS

The sort/merge program passes control to a user-written I/0 error routine only
when the operating system cannot correct the error condition. In the case of a
permanent read error the user-written routine can accept the block as is, attempt
to correct the error, skip the block, or request termination. For an uncorrect-
able write error, the user-written routine can perform any necessary abnormal end-
of-task operations before the program is terminated. .

If no user-written routines are supplied, the sort/merge program issues the
message IER061A-I/0O ERR xxx, where xxx represents the number of the unit on which
the error occurred. Then the program terminates.

EXCEEDING INTERMEDIATE STORAGE CAPACITY

The sort/merge program estimates a maximum intermediate storage capacity (Nmax)
from the information supplied to it at the beginning of the sorting operation.

You can supply an actual or an estimated input data set size to the program.
(This is done via the SIZE parameter on a SORT control statement described in
"Defining the Sort or Merge" in Section 2.) If you supply an actual data set e
size, and the size is larger than Nmax, the program terminates before starting to
sort. If you supply an estimated data set size, or if you do not give a data set
size, and the number of records processed while sorting reaches Nmax, the program
gives control to a user-written Nmax routine, if one is supplied. The Nmax rou-
tine can take one of the following actions:

e Indicate to sort/merge that it should continue sorting the entire input data
set with available intermediate storage. (If the estimated input data set
size was high, there may be enough intermediate storage left to complete the
application.)

e Direct sort/merge to continue sorting with only part of the input data set.
(The remainder of the data set could be sorted later and the two results
merged to complete the application.)

e Terminate the program without any further processing.

If an Nmax routine is not supplied, sort/merge continues to process records
beyond Nmax. If the intermediate storage capacity is sufficient to contain all
the records in the input data set, the sort completes normally; when intermediate
storage is not sufficient, the program terminates.

The sort generates a separate message for each of the three possible error con-
ditions. These messages are:

IERO41A-N GT NMAX: Generated before sorting begins when the exact data set size
supplied on a SORT control statement is greater than Nmax.

IEROU4UG6A-SORT CAPACITY EXCEEDED: Generated when the sort has used all available
intermediate storage while processing.

IERO48I-NMAX EXCEEDED: Generated when the sort has exceeded Nmax and has trans-
ferred control to a user-written Nmax routine for further action.

(A full description of all program messages is contained in Appendix D.)

18

Section 2: How to Use the Sort/Merge Program

There are three basic things you must do to use the sort/merge program:

1. Define your sorting or merging job with sort/merge control statements. (See
"Defining the Sort or Merge"™ in this section.)

2. 1If your job is a sort, determine the amount of intermediate storage your data
will require while it is being sorted and merged. (See "Determining Interme-
diate Storage Requirements" in this section.)

3. Prepare job control language statements for the job and combine them in prop-
er order with the sort/merge control statements. (See "Job Control Language
for Sort/Merge™ in this section.)

Detfining the Sort or Merge

The sort/merge program must know what to do with your input data. The program
needs a general description of the input data, information about the control
fields in the input records, and a description of your modification routines, if
any, that will be used during sort/merge execution. Sort/merge control statements
supply this information to the program.

Control statement formats for all System/360 sort/merge programs are constant
even though operating environments and data descriptions are different. Com—
patibility of control statements among System/360 sort/merge programs is discussed
later in this section. The five control statements that are acted upon by the
operating system sort/merge program are:

SORT Statement Provides information about control fields and data set size. Use
this statement if your job is a sort. Do not use this statement
for a merge-only job.

MERGE Statement Provides the same information as a SORT statement. Use this
statement if your job is a merge. Do not use this statement for
a sort operation.

RECORD Statement Provides record length and type information. This statement is
required only when your modification routines change record
lengths during sort/merge execution.

MODS Statement Associates your modification routines with particular sort/merge
program exits. This statement is required only when you supply
modification routines to be executed at sort/merge exits. ("Sec-
tion 3: Program Modification," describes these exits and the
requirements for routines that use them.)

END Statement Signifies the end of a related group of sort/merge control state-
ments. This statement is required when sort/merge statements are
not followed immediately in the input stream by a /* statement.

Each statement is checked for validity before it is acted upon by the sort/
merge program. If the program finds an error, it issues a diagnostic message.
(see Appendix D for descriptions of messages.) However, the program may not be
able to detect all errors or inconsistent combinations of entries so you should be
very careful in preparing control statements.

Section 2: How to Use the Sort/Merge Program 19

CONTROL STATEMENT FORMAT

All sort/merge control statements have the same general format:

Column 1 must
[be blank 72 73-80

h

Operation Operand Comments Sequence or

Identification

Continuation Column

The control statements are free-form; that is, the operation definer, operand(s),
and comments may appear anywhere in a statement, as long as they appear in the
proper order, and are separated by one or more blank characters. Column 1 of each
control statement must be blank.

Operation Field: This field must appear first on the card. It must not extend
beyond column 71 of the first card. It contains a word (SORT, MERGE, RECORD,
MODS, or END) that identifies the statement type to the sort/merge program. In
Figure 5, the operation definer SORT is in the operation field of the sample con-
trol statement.

Operand Field: The operand field is made up of one or more operands separated by
commas. This field must be the second field on the card and be separated from the
operation field by at least one blank. If the statement occupies more than one
card, this field must begin on the first card. Operands supply parameters to the
sort/merge program. Each operand is made up of an operand definer, or keyword (a
group of characters that identifies the operand type to the sort/merge program) .

A value or values may be associated with a keyword. The three possible operand
formats are:

e keyword=(value,,value,,...,valuep) s
* keyword=value
e keyword

Figure 5 contains an example of each of these formats.

]
|Column 1 must

|be blank 72 73-80

g

|(SORT FIELDS=(10,30,A),FORMAT=CH,CKPT X 000001

| r to 1

-

|Operation Operand 1 Operand 2 Operand 3 Continuation Sequence
|Field Punch Field

L
Figure 5. Control Statement Example

Comments Field: This field may contain any information you desire. It is not
required, but if it is present, it must be separated from the operand field by at
least one blank. Message IER009I appears for each statement containing comments.

continuation Column (72): Any character other than a blank in this column indi- /
cates that the present statement is continued on the next card. 1In Figure 5 , X

is used to specify that the next card contains more information pertaining to this
SORT control statement.

Ccolumns 73-80: This field may be used for any purpose you desire. It may be used
for identification, or as shown in Figure 5, for sequencing.

20

S ———

N /

Continuation Cards

The format of the sort/merge continuation card is:

column
16 72 73-80
(’ b-Continued Operand or Comments 4 Sequence
Continuation Column

The continuation column and columns 73-80 of a continuation card fulfill the
same purpose as they do on the first card of a control statement. Columns 1
through 15 of a continuation card must be blank. The maximum number of continua-
tion cards allowed for each type of control statement is shown in the following
table:

Control Maximum Number of
Statement Type Continuation Cards
SORT 19

MERGE 19

RECORD 5

MODS 19

END none allowed

A continuation card is treated as a logical extension of the preceding card.
Either an operand or a comments field may begin on one card and continue on the
next. The following rules apply to continuing operands or comments fields:

e If an operand is continued through column 71, the next character of the

operand must appear in column 16 of the continuation card. Columns 1-15 must
be left blank. For example:
71— 72
I

FORX

MAT=CH

NN

16
e If an operand field is broken between two cards without filling the first card
through column 71, it must be done in either of two ways:

1. At the end of a complete operand followed by a comma and a blank (or
blanks). For example:

(/SORT FIELDS=(10,30,3), X

(FORMAT=CH, CKPT

2. At the end of any of the values in an operand of the type keyword=(value,,
value,,...,valuey), followed by a comra and a blank. For example:

(/SORT FIELDS=(10, X

(’ 30,A) , FORMAT=CH, CKPT

Section 2: How to Use the Sort/Merge Program

21

The following rules apply to control statement preparation:
e Column 1 of each control statement must be blank.

e The operation field must be the first field on the first card of a control
statement and may not be carried over onto a continuation card.

e The operand field, if present, must begin on the first card of a control
statement. The last operand in a statement must be followed by at least one
blank.

e Embedded blanks are not allowed in operands. Anything following a blank is
considered part of the comments field.

e Values may contain no more than eight alphameric characters.

e Commas and blanks can be used only as field delimiters. They must not be used
in values.

» Each type of sort/merge control statement may appear only once for each execu-
tion of the sort/merge program.

e No more than 33 control statement cards, including continuation cards, are
allowed for a sort/merge program execution.

SORT CONTROL STATEMENT

The SORT control statement must be used when a sorting application is to be per-
formed. It describes the control fields on which the program will sort.

The format of the SORT statement is shown in Figure 6. The first field in the
statement must be the operation definer SORT, followed by at least one blank.

1
[Column 1 must j
|be blank i

FIELDS= (plv'm1,f1'51, '.‘.'Peulmsﬂ'fs‘ﬁ'ssu)
SORT [,SIZE=y] [, SKIPREC=2] [, CKPT]
FIELDS= (P4 4M2,S1s+++sPg,sMg,srSg,) s FORMAT=XX

b s s s s e e s e)

Figure 6. SORT Control Statement Format

Parameters

The FIELDS operand describes control fields. BAs shown in Figure 6, it can be
written in two ways. Use the FIELDS format shown at the top of Figure 6 to
describe control fields that contain different data formats. Use the format at
the bottom of the fiqure to describe control fields that contain data of the same
format. The format at the bottom of the figure is optional; you can always use
the top format if you prefer.

The sort/merge program requires four facts about each control field in the
input records: the position of the field within the record, the length of the
field, the format of the data in the field, and the sequence into which the field
is to be sorted. These facts are communicated to the program by the values of the
FIELDS operand which are represented by p, m, £, and s in Figure 6.

The major control field, the one sort examines first, is specified first. Suc-
cessive minor control fields are specified following the major control field. Up
to 64 control fields can be used. In Figure 6, p,,m;,f,,s; describe the major
control field. pa,Marf2sSareeesPg, Mg, sEg,¢S 4, describe the successive minor con-
trol fields.

=]

I+h

specifies the beginning (high-order location) of a control field relative to
the beginning of the record which contains the control field. (For variable-
length records, the logical record includes the four-byte record length indi-
cator.) The first (high-order) byte in a record is byte 1, the second is
byte 2, etc. All control fields, except binary, must begin on a byte boun-
dary. Fields containing binary values are described in bytes and bits as
follows:

First give the byte location relative to the beginning of the record and
~follow it with a period. Then give the bit location relative to the begin-
ning of that byte. The resulting notation is then -- bytes.bits. The
first (high-order) bit of a byte is bit 0; the remaining bits are numbered
1 through 7.

Thus, 1.0 represents the beginning of a record. A binary field beginning
on the third bit of the third byte of a record is represented as 3.2. When
the beéginning of a field falls on a byte boundary, (say, for example, the
fourth byte) you can write it in one of three ways:

4.0
4.
y

Other examples of this notation are:

X N

Z1.0 ZZ.Q Z&O

1.
1

specifies the length of the control field. All control fields except binary
must be a whole number of bytes long. The length of d control field that is
a whole number (d) bytes long can be expressed in one of three ways:

d.o0
d.
d

Binary fields are expressed in the notation -- bytes.bits. The number of
bits specified must not exceed 7. A control field two bits long would be
represented as 0.2.

specifies the format of the data in the control field. £ can be any one of
the following two-character abbreviations:

CH -- Character

ZD -- Zoned decimal
PD -- Packed decimal
FI -- Fixed-point
BI -- Binary

FL -- Floating-point

If all the control fields contain the same type of data, you can omit the f
parameters and use the optional FCRMAT=xx operand.

]

Section 2: How to Use the Sort/Merge Program

23

The table below contains the data formats, indicates whether or not they are
signed, and shows the maximum control field length for each format.

r T 1

| FORMAT | SIGNED | NUMBER OF BYTES i
Lt 1 1 d
)] T 1
CH	NO	1-256
D	YES	1-16
PD	YES	1-16
FI	YES	1-256
BI	NO	1 bit - 256 bytes
FL	YES	1-256
L L 1 J

1)

specifies how the control field is to be ordered. One of the following one-
character codes must be used for s:

A -—- Ascending sequence
D -- Descending sequence
E -- User modification

If you are including your own routine to modify control fields before the
sort/merge program sequences them, use E. After your program has modified
the control fields, the sort/merge program orders the fields in absolute
ascending sequence. (See "Exit E61", described in "Section 3: Program Modi-
fication,"™ for further information about modifying control fields.)

Options
You can use the following optional operands with the SORT control statement.

FORMAT=xx: If all the control fields contain the same type of data, you can use
this operand instead of the f parameter of the FIELDS operand to specify the data
format. If all the control fields are not of the same type, you must use the f
parameter of the FIELDS operand. The possible values for xx are the same as those
for the £ parameter.

SIZE=y: This operand specifies the number of records in the input data set. The
value y can be either the actual data set size or an estimate of the size.

If you give an actual data set size, do not include any records inserted in the
input data set by one of your routines. If the number of records in the input
data set, as counted by the sort/merge program, does not agree with the value of
the SIZE parameter, the sort terminates. The value specified in the SIZE parame-
ter is placed in the IN field of message IEROU47A or IERO54I. If you give an esti-
mated data set size; precede the value by E (for example, E5000).

If you omit the SIZE operand, the sort/merge program assumes that:

e If intermediate storage is tape, the input data set can be contained on one
volume at the blocking factor used by the sort.

e If intermediate storage is direct access, the input data set will fit into the
space you have allocated.

SKIPREC=z: If you want the sort to skip a certain number of records before start-
ing to process the input data set, use this operand. Substitute the number of
records you want skipped for z. On a preceding sort/merge program execution you
may have exceeded storage capacity and only part of your input data was sorted.
(The program prints a message specifying the number of records sorted in a partial
run.) Using this operand, you could request that sort skip over the records it
processed in the preceding run and sort the remaining records. You could then
merge the output from the two sort runs to complete the sort/merge operation.

If you were using a routine to insert or delete records in a run during which

sort capacity was exceeded, you will have to provide a routine that will reposi-
tion the modified data set before the second part of the data set can be sorted.

24

. .

CKPT: This operand tells the sort/merge program to activate the checkpoint facil-
ity of the operating system. The program takes ch
sort phase and at the start of the final merge phase. In addition when the

balanced or polyphase tape techniques are used, the program takes a checkpoint at
the start of each intermediate merge phase pass.
nique is used, the program takes checkpoints at intervals during the intermediate

merge phase.

eckpoints at the start of the

If the oscillating tape tech-

In addition to those taken at the beginning of each pass, the balanced direct
access technique takes checkpoints at selected intervals during the intermediate

merge phase.

You can have the program restart from the last checkpoint taken or from the

checkpoint written at the

start of the sort phase.

When you use the checkpoint/restart facility, you must define a data set for
the checkpoint records. The data set is described further in this section under

"Job Control Language for

Sort/Merge".

The following rules apply to the control fields described on a SORT control

statement:

e All control fields must be located within the first 4,092 bytes of a record.

e The first byte of a floating-point field is interpreted as a signed exponent.
The rest of the field is interpreted as the fraction.

e All floating-point data must be normalized before the sort/merge program can
You can use your own routine to do this at execution

collate it properly.
time. (See "Exit E61"

in "Section 3: Program

Modification.") Specify the E

option for the value of s in the FIELDS operand for each control field you are

going to modify.

e The total number of bytes occupied by all control fields must not exceed 256.
A binary field is considered to occupy an entire byte if it occupies any part
of it. For example, a binary field that bkegins on byte 2.6 and is 3 bits$ long

occupies two bytes.

This three bit binary control field

f“/;ﬁ

~
Occupies two bytes

Section 2:

How to Use the Sort/Merge Program

25

SORT Statement Examples

T
|Column 1
|must be blank

G

|
|(SORT FIELDS=(2.0,5.0,CH,A),SIZE=29483
|
|
L

bt e e e s e e .)
N

SORT Statement Example 1. Omne Control Field and Size Option.

FIELDS operand
2.0 means that the control field begins on the second byte of each record in
" the input data set. ‘
5.0 means the control field is five bytes long.
CH means the control field contains character data.
A instructs the program to sort the fields into ascending order.

SIZE operand
The input data set contains exactly 29,483 records.

I
|Column 1 must Column 72
|be blank

l o A

I NN
SORT FIELDS=(7.0,3.0,CH,1£1.0,5.0,FI,A¥398.4,7.6,BI,DL99.0,230.2,BI,A&X

>

|
|
|
|
| Column 16
|

|

Il

|(/ 452.0,8.0,FL,A), SIZE=10693, CKPT
| % i
|

b s e e . s s oo s s o — — o o]

SORT Statement Example 2. Five Control Fields, Size and Checkpoint Options

FIELDS operand The first four values describe the major control field. It
begins on byte 7 of each record, is 3 bytes long, contains
character data, and is to be sorted into descending sequence.
The next four values describe the second control field. It
begins on byte 1, is 5 bytes long, contains fixed-point data,
and is to be sorted into ascending sequence.

The third control field begins cn bit 5 (bits are numbered 0
through 7) of byte 398. The field is 7 bytes and 6 bits long
(occupies 9 bytes), and contains binary data to be placed in
descending order.

The fourth control field kegins on byte 99, is 230 bytes and 2
bits long, contains binary data, and should be sorted into
ascending order.

The fifth control field begins on byte 452, is 8 bytes long,
contains normalized floating-point data which is to be sorted

into ascending order. If the data in this field was not nor-

malized, you would specify E instead of A and include your own
routine to normalize the field, before sort/merge examines

them.
SIZE operand The input data set contains exactly 10693 records.
CKPT operand Instructs the sort/merge program to take checkpoints during

this run.

26

CTee?d

o

F
|Column 1 must
|be blank

|
|(SORT FIELDS=(3.0,8.0,2ZD,E,40.0,6.0,CH,D),SIZE=E30000
|

L

el ————

SORT Example 3. Two Control Fields, User Modification, Size Option

FIELDS operand The first four values describe the major control field. It
begins on byte 3 of each record, is 8 bytes long, contains
zoned decimal data that will be modified by your routine
before sort examines the field.

The second field begins on byte 40, is 6 bytes long, contains
character data and will be sorted into descending sequence.

SIZE operand The input data set contains approximately 30,000 records.

L}
|Column 1 must
|be blank

|
|(SORT FIELDS=(25,4,A,48,8,R), FORMAT=2D
|

L

ol P ———

SORT Statement Example 4. Two Control Fields, Format Option

FIELDS operand The major control field begins on byte 25 of each record, is U4
bytes long, contains zoned decimal data (FORMAT=ZD), and is to
be sorted into ascending sequence.

The second control field begins on byte 48, is 8 bytes long,
has the same data format as the first field, and is also to be
sorted into ascending order.

The FORMAT=xx option can be used because both control fields
have the same data format. It would also be correct to write
this SORT statement as follows:

I
|Column 1 must
|be blank

|
|(SORT FIELDS=(25,4,2D,A,48,8,%D,A)

L

e E o p——

MERGE CCNTROL STATEMENT

The MERGE control statement must be used when a merge-only operation is to be
performed. It provides essentially the same information to the sort/merge prodgram
for a merge as the SORT statement does for a sort. As you can see from Figure 7,
the format of the MERGE statement is very much like that of the SORT statement.
There are the following differences:

e The operation definer is MERGE.

e The SKIPREC and CKPT options are not used.

* The value of the SIZE operand is the total number of records in all the input

data sets.

Section 2: How to Use the Sort/Merge Program

27

r
|Column 1 must
|be blank

FIELDS=(py ,M1,f1,S1+sP2sM2sf2,S2424,P_ /0, £ ., +S.,)
MERGE 64’ "su’6u" 64 [,SIZE=y]
FIELDS=(pP41,M1,S1,P2sM2sS2sen- "psl-b'msu'ssu) +» FORMAT=xx

[S s . . ——

b e e e e e et e, . e)

Figure 7. MERGE Control Statement Format

Parameters

The FIFLDS operand is written exactly the same way for a merge as it is for a
sort. The meanings of p, m, £, and s were described previously in the discussion
of the SORT statement.

The SIZE operand is optional. Its value can be either exact or estimated. The

value refers to the total number of records in all the input data sets to be
merged.

MERGE Statement Examples

1]
|Column 1 must
|be blank

| —
|(MERGE FIELDS=(2.0,5.0,CH,R),SIZE=29483
|

L

RS S ———

MERGE Statement Example 1. One Control Field, Size Option

FIELDS operand The control field begins on byte 2 of each record in the input
data sets. The field is 5 bytes long, and contains character
data that has been presorted into ascending order. '

SIZE operand The input data sets contain exactly 29,483 records.

r
|Column 1 must
|be blank

| .
|(MERGE FIELDS=(3.0,8.0,ZD,E,40.0,6.0,CH,D),SIZE=E30000
| L

be o s s e e e w— o)

MERGE Statement Example 2. Two Control Fields, User Modification, Size Estimate

FIELDS operand The major control field begins on byte 3 of each record, is 8
bytes long, and contains zoned decimal data that will be modi-
fied by your routine before the merge examines it.

The second control field begins on byte 40, is 6 bytes long,
and contains character data that is in descending order.

SIZE operand The input data sets contain approximately 30,000 records.

28

i
|Column 1 must
|be blank

| 3
|{ MERGE FIELDS=(25,4,A§48,8,A),FORMAT=ZD
| A

L

e o e —— c—— — o]

MERGE Statement Example 3. Two Control Fields, Format Option

FIELDS operand The major control field begins on byte 25 of each record, is 4
bytes long, and contains zoned decimal data that has been
placed in ascending sequence.

The second control field begins on byte 48, is 8 bytes long,
is also in zoned decimal format, and is also in ascending
sequence. The FORMAT=xx option can be used because both con-
trol fields have the same data format.

RECORD CONTROL STATEMENT

The RECORD statement is required only when your routines change record lengths
during a sort/merge program run. The statement describes the format and lengths
of the records being sorted or merged. The format of the RECORD statement is
shown in Figure 8.

Parameters

The RECCRD statement has two operands, TYPE and LENGTH. Both are required when
the RECORD statement is used.

TYPE: The TYPE operand specifies whether the input records to sort/merge are
fixed- or variable-length format.

TYPE=F indicates fixed-length records.
TYPE=V indicates variable-length records.

LENGTH: The LENGTH operand specifies the length in bytes of the input records,
the length in bytes of the records that enter the sort phase of the sort/merge
program, (you can include your own routine to change record lengths before the
records are sorted), and the length in bytes of the records in the output data
set. (You can change record lengths during the final merge phase of the program.)

The value 1, is required whenever the RECORD statement is used. The values 1,
and 15 are required only when your routines change record lengths before the sort
or during the final merge. The values 1, and 1, are used only for variable-length
records.

L]
|Column 1 must
|be blank

TYPE=F,LENGTH=(1,,1,,13)
RECORD
TYPE=V, LENGTH= (L1, 12, 13, 1L‘ ’ 15)

[e ——— e S—— —

b e s o e . o . a— —

Figure 8. RECORD Control Statement Format

Section 2: How to Use the Sort/Merge Program 29

Defining Fixed-Length Records

If your input records are fixed-length, use 1,, 1,, and 15 as follows:

1,

1z

1s

is the length of each record in the input data set. If you use the RECORD
control statement, you must include this value. The value should be the same
as the value you specified in the LRECL subparameter of the DCB parameter on
the SORTIN DD statement (discussed later in this section.) If the values are
not the same, sort/merge uses the value specified on the DD statement.

is the length of each record handled by the sort phase. If you do not speci-
fy a value for 1,, the program assumes that it is equal to 1,. If you are
going to change record lengths in the sort phase, you must include a value
for 1,. You do not need 1, for a merging application.

is the length of each record in the output data set. If you do not specify a
value for 1,, the program assumes that 13=1, for a sorting application and
that 13;=1, for a merging application. If your routines change record lengths
during the final merge phase of the program, you must specify a value for 1,;.
This value should be the same as the value you specified for the LRECL sub-
parameter of the DCB parameter on the SORTOUT DD statement (discussed later
in this section). If the values are different, the sort/merge program uses
the value given on the DD statement.

Defining Variable-Length Records

If your input records are variable-length, use 1,, 1>, 13, 1,, and 1, as follows:

1,

1z

1s

30

is the maximum length of the records in the input data set. If you use the
RECORD statement, you must specify a value for 1,. The value should be the
same as the value you specified in the LRECL subparameter of the DCB parame-
ter on the SORTIN DD statement (discussed later in this section). If the
values are not the same, the program uses the LRECL value.

is the maximum length of the records handled by the sort phase. If you do
not specify a value for 1,, the program assumes it is equal to 1. If you
change record lengths in the sort phase, you must provide a value for 1,.
You do not need 1, for a merging application.

is the maximum length of each record in the output data set. If you do not
specify a value for 15, the program assumes 13=1, for a sort and 15=1, for a
merge. If you include a routine that changes record lengths in the final
merge phase, you must specify a value for 13. The value should be the same
as the value you provided for the IRECL subparameter of the DCB parameter on
the SORTOUT DD statement. If it is not, the program uses the LRECL value.

is the minimum length of records in the input data set. If you do not speci-
fy a value for 1,, the program assumes it is equal to the minimum record size
necessary to contain the control fields defined on the SORT or MERGE control
statement, or the minimum record length allowed by the operating system,
whichever is greater. You need not specify this value for a merge.

is the record length that occurs most frequently in the input data set (modal
length). You should use this value to help define a data set biased toward a
particular length. If you do not specify a value for 15, the program assumes
it is equal to the average of the maximum and minimum record lengths in the

input data set. If, for example, your data set contains mostly small records

S

and just a few long records, the program would assume a high modal length and
would allocate a larger record storage area than necessary. Conversely, if
your data set contains just a few short records and many long records, the
program would assume a low modal length and might not allocate a large enough
record storage area to sort your data.

When you use the RECORD statement, consider the following:

The lengths you specify for variable length records must include the U4-byte
count field that the operating system places at the beginning of each record.

When you use a direct access device for intermediate storage, record length
cannot exceed the capacity of one track.

The minimum record length of records in the input data set is 18 bytes.

The record format you specify in the TYPE operand must be the same as the for-
mat you used in the RECFM subparameter of the DCB parameter on the SORTIN and
SORTOUT DD statements (described later in this section.) If the formats are
not the same, the program uses the cne you specified in the DD statement.

When you use an operand like the LENGTH operand of the type, keyword=(value,,
value,,...,valuep), you can omit values that are equal to those assumed by the
program. The following rules apply to omitting values from the LENGTH
operand:

1. You can drop values from right to left. If all the values after 1, are
equal to the values assumed by the program, you could write --
LENGTH=(1,,1,).

2. If you drop values from the middle or from left to right, you must use
commas to indicate their omission. If 1, is equal to the value assumed
by the program, you could write —-- LENGTH=(1,4,,13).

RECORD Statement Examples

r
|Column 1 must
|be blank

|
|(RECORD TYPE=F,LENGTH=(60,40,50)
|

T R ——

RECORD Statement Example 1. Fixed-length, Three Length Values

TYPE operand The input records are fixed-length.

LENGTH operand The records in the input data set are each 60 bytes long. You

change the records to 40 bytes in the sort phase and to 50
bytes in the final merge phase.

¥
|Column 1 must
|be blank

|
|(RECORD TYPE=V,LENGTH=(200,175,180,50,100)
|

P p———

RECORD Statement Example 2. Variable-length, Five Length Values

Section 2: How to Use the Sort/Merge Program

31

TYPE operand The records in the input data set are variable-length.

LENGTH operand The maximum length of the records in the input data set is 200
bytes. In the sort phase, you reduce the maximum record
length to 175 bytes. You add five bytes to each record in the
final merge phase, making the maximum record length in the
output data set 180 bytes. The minimum record length in the
input data set is 50 bytes and the most frequent record length
in the input data set is 100 bytes.

1)
|Column 1 must
|be blank

|
|(RECORD TYPE=F,LENGTH=(76,,50)
|

L

R ——

RECORD Statement Example 3. Fixed-length, Two Length Values

TYPE operand The records in the input data set are fixed-length.

LENGTH operand The input records are 76 bytes long. You do not change record
length in the sort phase so you omit 1, because sort/merge
will assume the proper value for it. In the final merge
phase, you change the record length to 50 bytes.

MODS CONTROL STATEMENT

The MODS statement is required only if you want the sort/merge program to transfer
control to your routine(s) at various points during sort/merge execution. The
statement associates your routines with specific exits in the sort/merge program
and provides the program with basic descriptions of your routines. For details
about exits in the sort/merge program and how to use them, refer to "Section 3:
Program Modification.”

Figure 9 shows the format of the MODS statement.

r
|]Column 1 must
|be blank

| 5 (S5
: MODS exit=(n1,m1,sl[,s)pee-,exit=(n,,,m,.,,5,,LSD)
|

L

U PR —

Figure 9. MODS Control Statement Format

Parameters

The sort/merge program provides seventeen exits at which control can be trans-
ferred to your routines. These exits are descriked in detail in "Section 3: Pro-
gram Modification." The exits have three-character names such as E11, E15, El6,
E28, etc. To use one of these exits, you substitute its three-character name for
the word "exit" in the MODS statement format example. The values associated with
the three-character name describe your routine. These values are:

n
the name of your routine (member name if your routine is in a likrary). 1If
your routine has been link edited previously and you do not want to have it
link edited agaln, its name must be the same as the three-character exit name
with which it is associated.

32

N’

the number of bytes, exact or approximate, of main storage that your routine

occupies.
s
either the name of the DD statement in your sort/merge job step that defines
the partitioned data set in which your routine is located, or SYSIN if your
routine is in the input stream. If your routines are in a concatenated data
set the value of s for all the routines must be the ddname of the data set.
N
S

indicates the linkage editor requirements of your routine.

N means that your routine has already been link edited and can be used in
the sort/merge run without further link editing.

S means that your routine requires link editing but that it can be link
edited separately from the other routines you are using in a particular
sort/merge program phase. Only routines at exits E11, E21, and E31 are
eligible for separate link editing; see Section 3.

Absence of these parameters means that your routine must be link edited
together with the other routines you are using in a particular sort/merge
program phase.

Refer to the topic "Bypassing the Linkage Editor" in "Section 3: Program
Modification" for details on how to design your routines.

When you are preparing your MODS statement, consider the following:

e Thée sort/merge program must know the amount of main storage your routine needs
so that it can allocate main storage properly for its own use. If you do not
know the exact number of bytes your program requires, make a slightly high
estimate. The value of m in the MCDS statement is written the same whether it
is an exact figure or an estimate. In other words, you do not precede the
value by E for an estimate as you did on the SORT or MERGE statement.

e If the routines you are using for a particular sort/merge run are in several
system libraries, you need a DD statement for each library. DD statements
required for sort/merge are described later in this section.

e If your routines are in the system input stream (SYSIN), you must arrange them
in numerical order (the E11 routine before the E15 routine, etc.). If you use
the same routine in several sort/wrerge program phases, you must provide a
separate copy of the routine for each use.

e Your routines can also reside in private libraries. The use of private
libraries is described in the publication IBM System/360 Operating System:
Job Control lLangquage, Form C28-6539.

MODS Statement Examples

)
|Column 1 must
|be blank

|
|(MODS E15=(E15,554,MODLIB,N),E35=(E35,11032,MODLIRB,N)
|

b s o e o e s e o

MODS Statement Example 1. Two Routines in a Library, No Link Editing

Section 2: How to Use the Sort/Merge Program

33

E15 At exit E15, the sort/merge program will transfer control to your routine.
Your routine is in the library defined by the MODLIB DD statement. Its
member name is E15, it is 554 bytes long, and has been link edited previous-
ly, and does not require further 1link editing.

E35 At exit E35, the program will transfer control to your routine. Your rou-
tine is in the library defined by the MCDLIB DD statement, its member name
is E35, it is 11032 bytes long and has been link edited previously.

)
|Column 1 must
|be blank

|

| (' MODS E17=(CLSE, 348,SYSIN)
| ,

|

L

e s e e s e s e)

MODS Statement Example 2. One Routine in SYSIN, Link Editing is Needed

E17 At exit E17, the sort/merge program will transfer control to your routine
which is named CLSE. Your routine is in object form in the system input
stream and will be link edited together with other routines in the sort
phase of the sort/merge program.

¥
|Column 1 must

|be blank Column 72

|

| r MODS E16=(NMAXERR,1000,MYLIB),E21=(E21,550,MODLIB,N), X
|

| E31=(E31,450,MODLIB,N) ,E35=(SUMUP,5000,SYSIN)

|

|

1

b s s s e e o e e e e 95

MODS Statement Example 3. Four Routines

. E16 The sort/merge program will transfer control to your routine at exit El6.
Your routine is named NMAXERR, is located in the likrary defined by the
MYLIB DD statement, and is approximately 1000 bytes long.

E21 At exit E21, the program will transfer control to your routine which resides
in the library defined by the MODLIB DD statement under the member name E21.
Your routine is 550 bytes long and does not require additional link editing.

E31 Another of your routines in the library defined by the MODLIB DD statement
will gain control at exit E31. Its memker name is E31, it is 450 bytes long
and does not require additional link editing.

E35 You have placed a routine named SUMUP in object form in the input stream.
It is approximately 5000 bytes long, must be link edited together with other
routines in its phase, and will receive control at exit E35.

34

)
|Column 1 must
| be blank

|
| MODS E11=(¥11,500,MYLIB,S)
|

L

N ———

MODS Statement Example 4. One Routine, Separate Link Editing

E11 At exit E1l on the sort phase, the sort/merge program will transfer control
to your routines. Your routine, named E11l, is located in a library defined
on a statement with the ddname MYLIB, is 500 bytes long, and can be link
edited separately from other routines in the sort phase. After the sort
phase is initialized, your El1l routine will be overlaid. Becuase you have
specified s for separate link editing, your routine can have no external
references.

END CONTROL STATEMENT

The END statement marks the end of all sort/merge control statements and continua-
tion statements for a particular sort/merge run. The END statement must be used
whenever the sort/merge control statements are not immediately followed in the
input stream by a /* statement. For example, if you include you own routines in
the input stream, they are placed between the sort/merge control statements and
the /* statement, so you must use an END statement.

The format of the END statement is shown in Figurello. The statement has no
operands. ,

r
|Column 1 must
|be blank

|

|

|(END
l(

| .
L

el D p———

Figure 10. END Control Statement Format

CONTROL STATEMENT COMPATIBILITY

There are eight control statement types used by System/360 sort/merge programs.
The System/360 Operating System sort/merge program acts upon the SORT, MERGE,
RECORD, MODS, and END statements descriked above. ' The three remaining control
statement types, INPFIL, OUTFIL, and OPTICN, are used only by other System/360
sort/merge programs. The operating system sort/merge program recognizes INPFIL,
OUTFIL, and OPTION as valid control statements, but does not act upon them.

The information contained in INPFIL and OUTFIL statements is supplied to the
operating system sort/merge program in DD statements. The information contained
in the OPTION statement is specified at system generation time.

The operating system sort/merge program accepts SORT, MERGE, RECORD, and END
statements used by other System/360 sort/merge programs. If these statements con-
tain parameters not recognized by the operating system sort/merge program, the
program ignores those parameters. However, because of differences in the way
parameters are specified, the operating system sort/merge program will not accept
MODS statements used by other System/360 sort/merge programs.

Section 2: How to Use the Sort/Merge Program

35

Summary of Sort/Merge Control Statements

FIELDS=(p],m], fl,s], Pyr My fz, Spr s e Pggr Mg F64' 564)

FIELDS = (p], M1s 510 Por Moy Sps o o s Pggr Mgas 564)’ FORMAT = xx

[, S|ze=y][, SKIPREC=z][, CKPT]

(SORT

FIELDS = (p], my, F10 510 Por Mo, fou 50, o o o) Peas Mg o4 564)
FIELDS = (p], ML/ Sy Pgr Moy Syr o s s Pagr Mgqr 564), FORMAT = xx

[, SIZE=y]

(MERGE

SORT and MERGE Statement Parameters

PARAMETER EXPLANATION LIMITATIONS EXAMPLE DEFAULT
P Control field position within record. All fields except binary must start on a 4.2 - a binary field starting on the
byte boundary. No field may extend past 3rd bit of the 4th byte.
byte 4092.
m Control field length. Character 1 - 256 bytes 16 - a maximum length packed decimal
Zoned Decimal 1 - 256 bytes field
Packed Decimal 1 - 16 bytes
Fixed - Point 1 - 256 bytes
Floating - Point 1 - 256 bytes
Binary - 1 bit - 256 bytes
f Control field data format. Must be one of the following: ZD - the code for a zoned decimal field
CH, ZD, PD, Fi, FL, or BI.
s Sequencing desired Must be one of the following: E - exit E61 will modify the control field
A - ascending to achieve a unique sequencing.
D - descending
E - user modification then absolute
ascending
FORMAT = xx | Optional. Used when all control field XX must be CH, ZD, PD, FI, FL, or Bl. FORMAT = PD - all control fields are
data formats are the same. packed decimal.
SIZE=y Optional. The number of records If y is an estimate, precede value with E40200 - an estimate of 40200 records.
in the input data set. May be an the character E.
estimate.
SKIPREC =z Optional. Program will skip z Not valid for a merge. SKIPREC =900 - the first 200 input
) records before sorting. records are ignored.
CKPT Optional. Checkpoints are taken. Not valid for a merge. CKPT

/END

The END statement must be used when user routines or data are in the input stream. The statement has no parameters.

36

/RECORDTYPE=x, LENGTH=(11, L, L5, 2, ls)

RECORD Statement Parameters

to sort phase

record length of]
input to sort
phase

maximum of 60. User routine has

modified original input record length.

PARAMETER EXPLANATION LIMITATIONS EXAMPLE DEFAULT
TYPE =x Tells program whether input x must be F or V TYPE =V - input is variable - length
records are fixed or variable
length.
Fixed Variable
11 Input record Maximum input l] may not be less than 18 bytes 80 - fixed - length input records are
length record length . . 80 bytes, or maximum variable -
See Figures 1 & 2 for maximum. . .
length input record is 80,
)’ Length of input| Maximum Ly is not used for a merge. 60 - input to sort phase is 60, or a Ly=1
2 2 27%1

Record length
of output
records

Maximum
record length of|
output records.

If specified, must be same as LRECL
for output, or else LRECL is used.

90 - output records are all 90 bytes
or a maximum of 90.

13 =k, for asort
l3 =L for a merge

Minimum input
record length.

Not used for fixed - length records.

30 - minimum variable - length
record is 30 bytes

l4 = sum of control field
lengths, or 18 bytes,
whichever is greater.

Modal input
record length

Not used for fixed - length records.

50 - in a variable-length input data
set, 50 bytes is the most frequently
occurring length.

As=£lzﬁ4

/s ir=(memen []) - o= (min s [)

MODS Statement Parameters

PARAMETER EXPLANATION LIMITATIONS EXAMPLE DEFAULT
exit = xx The name of an exit to be Must be a valid exit name. E28
activated.
n Name of the routine. Member CHANGE1
name if routine is in a library.
m Size, in bytes, of the routine. 514
s Location of the routine. Either the ddname of data set USERLIB - the routine is in a data set
containing routines, or SYSIN. defined by the DD statement named
USERLIB.
N Tells if no additional link Must be the character Nor S. N - no additional link editing is If not used, assumes.
editing or separate link required. link editing together.
editing is required.

Section 2:

How to Use the Sort/Merge Program 37

Sort/Merge Control Statement Examples

Following are a number of examples showing groups of sort/merge control state- S~
ments. Each example shows all the sort/merge control statements that are neces-

sary to accomplish a particular job. However, these control statements must be

accompanied by job control language statements before the job can be run. Later

in this section the JCL required for sort/merge execution is discussed. At the

end of that discussion is a group of complete JCL and sort/merge control statement

examples. The operands and values of the sort/merge control statements shown

there are the same as the ones in these examples.

Example 1 - Simple Sort

This example shows a simple sorting application. No modification routines are
included so neither the RECORD nor the MODS statement is required.

SORT FIELDS=(1.0,6.0,A,28,5,D),FORMAT=CH,SIZE=E10000
END .

SORT statement The FIELDS operand describes two fields. The first begins on
byte 1 of each record, is 6 bytes long, contains character data,
and is to be sorted into ascending order. The second field
begins on byte 28, is 5 bytes long, contains character data, and
is to be sorted into descending order. The optional FORMAT
operand is used because both fields contain data of the same
format.

END statement This statement is shown for completeness. It is not necessary
: since no modification routines which would come between the SORT
statement and the /* statement are included.

~—
Example 2 —-- Simple Merge
This example shows a simple merge application. The values of the FIELDS operand
are the same as those on the SORT statement in Example 1. No modification rou-
tines are included in this application.
MERGE FIELDS=(1.0,6.0,A,28,5,D),FORMAT=CH,SIZE=E10000
END
Example 3 —- Sorting With Modification Routines
This example shows a more complicated sorting application. Modification routines
are included, therefore a MODS statement is required. Some of the nmodification
routines change record lengths during sort/merge program execution, therefore a
RECORD statement is required.
SORT FIFLDS=(3.0,8.0,%D,E,40.0,6.0,CH,D),SIZE=E30000
RECORD TYPE=F,LENGTH=(120,100,80)
MODS E15=(E15,780,MODLIB,N),E16=(E16,1024,MODLIB,N), X
E35=(ADDUP, 912, SYSIN) ,E61=(CHGE,1000,SYSIN)
END
SORT Statement The FIELDS operand describes two control fields. The first will
be changed by a modification routine (at exit E61, see the MODS
statement) before sort/merge orders it into absolute ascending
sequence. The second control field will not be modified and will N,

be placed in descending sequence.

38

RECORD Statement The fixed-length records in the input data set are 120 bytes
long. B modification routine (at exit E15) changes them to 100
bytes during the sort phase. A modification routine at exit E35)
changes them again during the final merge phase (to 80 bytes
each).

MODS Statement The statement describes four modification routines. The first
two are in a library that is defined on the MODLIB DD statement
with member names of E15 and E16 respectively. Neither routine
requires additional 1link editing. The next two routines are in
object form in the input stream. Their names are ADDUP and CHGE,
respectively. They must be link edited together with other rou-
tines in their phases that require link editing.

END Statement This statement is required because of the modification routines
in the input stream.

Example 4 — Merging With Modification Routines

This example is a merging application. Modification routines that change record
lengths and control fields are included.

MERGE FIELDS=(1,6,CH,E),SIZE=8150

RECORD TYPE=V,LENGTH=(240,,200,,160)

MODS E35=(CALC,800,USERLIB),E61=(E61,450,MCDLIB,N)
END

MERGE Statement The FIELDS operand describes one control field that will be modi-
fied (by the routine at exit E61) before it is examined by the
merge. The exact size of the input data sets is given.

RECORD Statement All the records in the input data sets are variable-length. The
maximum record length in the input data sets is 240. A modifica-
tion routine (at exit E35) shortens all records by 40 bytes mak-
ing the maximum record length in the output data set 200 bytes.
The most frequent record length in the input data set is 160

bytes.

MODS sStatement A routine named CALC receives control at exit E35. CALC is
approximately 800 bytes long, resides in the library defined on
the USERLIB DD statement and must be link edited together with
other routines in its phase which require link editing. At exit .
E61, the sort/merge program transfers control to a routine from
the library defined by the MCDLIB DD statement. The member name
of this routine is E61. This routine is 450 bytes long and does
not need further 1link editing. '

END Statement The END statement is not required because there are no modifica-
tion routines in the input stream, but it is shown here for
completeness.

Section 2: How to Use the Sort/Merge Program 39

Example 5 - Sort

This example shows a one-field sort with fixed-length records whose length is
changed during the course of sort/merge execution by a routine at exit E35.

SORT FIELDS=(10,5,CH,A),SIZE=10000

RECORD TYPE=F,

MODS E35=(E35,

END

SORT Statement

RECORD Statement

MODS Statement

END Statement

Example 6 — Sort

LENGTH=(80,,50)

534, SYSIN)

The FIELDS operand describes one control field that begins on
byte 10 of each record, is 5 bytes long, contains character data,
and is to be sorted into ascending order. The optional SIZE
operand indicates that there are exactly 10,000 records in the
input data set.

This statement indicates that the input data set contains 80-byte
fixed-length records and that the records will be shortened to 50
bytes each as they leave the final merge.

The statement describes a modification routine that will receive
control at sort/merge program exit E35. The name of the routine
is E35, it is 534 bytes long, appears in object form in SYSIN,
and must be link edited together with other routines in its phase
which require link editing.

This statement is required because the sort/merge control state-
ments are not followed immediately by a /* statement. (The E35
object deck follows the END statement in the input stream.)

This example shows a one-field sort with variable-length records. Modification

routines receive

control at exits E11 and El6.

SORT FIELDS=(20,5,CH,R),SIZE=E25500

RECORD TYPE=V,

MODs E11=(E1l1,

END

SORT Statement

RECORD Statement

MODS Statement

40

LENGTH=(120,,,60,80)

500,USERLIB,S) ,E16=(E16,554,USERLIB, N)

The FIELDS operand describes one control field that begins on
byte 20 of each record, is 5 bytes long, contains character data,
and is to be sorted into ascending order. The optional SIZE
operand indicates that there are approximately 25,500 records in
the input data set.

This statement indicates that the input data set contains
variable-length records with a maximum record length of 120
bytes, a minimum record length of 60 bytes and a modal (most fre-
quent) length of 80 bytes. The RECORD statement is not required
for this example, but without it, sort/merge would assume a mini-
mum record length of 24 bytes (large enough to contain the speci-
fied control field) and a modal length of 72 bytes (the average
of maximum and minimum lengths).

The statement describes two modification routines. One will

receive control at exit El1l. It is named E11, is 500 bytes long
and can be link edited separately. (See "Bypassing the Linkage
Editor" in "Section 3: Program Modification," for a description
of the requirements for separate link editing.) The El11 routine

" ,

is in a library described on a DD statement with the ddname USER-
LIB. The other modification routine, named E16 will receive con-
trol at exit E16. The routine is 554 bytes long and the library
in which it resides is described on the DD statement USERLIB.

The E16 routine has been link edited previously and does not
require further link editing prior to its use in this
application.

END statement This statement is not requiréd in this example. It is shown for
completeness only.

Example 7 - Sort

This example shows a two-field sort. A modification routine at E35 places part of
the output data set on a device other than SORTOUT.

SORT FIELDS=(1,10,CH,A,11,6,PD,D) ,SIZE=E15000
MODS E35=(SUBSET,1024,SYSIN)
END

SORT Statement The FIELDS operand describes two control fields. The first is a
10-byte field beginning on byte 1. It contains character data
which is to be sorted into ascending order. The second is a 6-
byte field which begins on byte 11 and contains packed decimal
data to be placed in descending order. The input data set con-
tains approximately 15,000 records.

MODS Statement A routine named SUBSET will receive control at sort/merge exit
E35. The routine is 1024 bytes long, must be link edited togeth-
er with other routines in the final merge phase of the program,
and will appear in object form in SYSIN.

END Statement This statement is required for this example because the SUBSET
routine will appear in the input stream between the sort/merge
control statements and the /* statement.

Determining Intermediate Storage Requirements

If you are performing a sorting application, you must calculate the amount of
intermediate storage the sort/merge program needs to sort your data. The basic
factors to consider are the type of device on which you assign intermediate
storage and the number of records in your input data set. BAnother factor which
must sometimes be weighed is the amount of main storage assigned to the sort/merge
program. In general, the less main storage sort/merge has to operate in, the more
intermediate storage it needs to complete a sorting application.

INTERMEDIATE STORAGE DEVICES

You can assign intermediate storage either on magnetic tape or direct access
devices, but not on a mixture of both.

IBM 2400 Series Magnetic Tape Units can be used for intermediate storage. The
sort/merge program can operate with a mixture of 7-track and 9-track tapes. If
the sort input data set is on 7-track tape, you can use any combination of 7-track
and 9-track tapes for intermediate storage and output, or intermediate storage and
output can be on 2311 disks, 2314 storage facilities, or 2301 drums. However, if
7-track tape is not used for input, it cannot be used for intermediate storage or
output. When 7-track tape is used for intermediate storage, variable length rec-
ords cannot be handled.

Section 2: How to Use the Sort/Merge Program

41

If you assign 7-track tapes for input, you can use the data converter. If you
assign 7-track tape for intermediate storage, you cannot use the data converter,
nor can you use the translation feature for anything but character data.

If you use direct access devices for intermediate storage, use only one type of
direct access device as intermediate storage for a given sorting application. The
types of direct access devices available for intermediate storage are:

e IBM 2311 Disk Storage Drive.
e IBM 2301 Drum Storage Drive.
e IBM 2314 Direct Access Storage Facility.

INTERMEDIATE STORAGE SPACE REQUIREMENTS

Use the following formulas to calculate the amount of intermediate storage neces-
sary for a given sorting application, device type, and sequence distribution tech-
nique. Unless you force a sequence distribution technique, you do not know which
one sort will use. This causes no difficulty, however. The amount of intermedi-
ate storage you assign may affect the sort/merge program's choice of a technique.
In other words, you may implicitly rule out one technique by not providing enough
intermediate storage for its use. To avoid this possibility, calculate the inter-
mediate storage required by all the techniques and provide the largest amount
needed.

Tape Intermediate Storage

If you use tape for intermediate storage, the following formulas give the number
of tapes needed to complete a tape sort for a given data set size and sequence
distribution technique:

Formula 1 n = 2(x+1) -- balanced tape technique -- maximum input is 15 reels.
Formula 2 n = x+2 -- oscillating tape technique -- maximum input is 15 reels.
Formula 3 n = 3 reels -- polyphase tape technique -- maximum input is 1 reel.

The x represents the number of volumes required to contain the input data set with
a blocking factor equal to that used for intermediate storage by the sort/merge
program. For an approximate sort blocking figure refer to the publication IBM
System/360 Operating System: Sort/Merge Timing Estimates, Form C28-6662, under
your particular configuration and record length.

The maximum number of tape units that can be used for intermediate storége are:
32 for the balanced technique.
17 for the oscillating technique.
17 for the polyphase technique.

These maximums permit the sorting of 15 reels of input with the balanced and
oscillating techniques. The polyphase technique allows only one reel of input.

42

N’

l2311, 2301, and 2314 (Balanced Technigque) Intermediate Storage

Use the following formula to calculate the approximate number of tracks (T)
required to complete a direct access sort for a given data set size when interme-
diate storage is on 2311 or 2314 disk or 2301 drum. If the data set tends to be
ordered in reverse of the sequence you want the output to be in, more intermediate
storage may be necessary. Conversely, if the input data set tends to ke ordered
in the desired sequence, less intermediate storage is necessary.

Formula 4 . T=_8S(N) + 2N
k(N-1)
where:
N is the number of intermediate storage areas. You must have at least three,
but no more than six.
|S is the number of records in the input data set, exact or approximate.
k = B
L
where:

B is 3,400 for the 2311
18,000 for the 2301
| 7,000 for the 2314

L is the length in bytes of each record in the input data set. For variable-
length records, L is the maximum length.

Only the integer portion of k is used for calculating T. Disregard the
remainder, whatever its value. If the formula yields k = Q, use the value 1.

You must make at least three intermediate storage areas available to the sort
and define each as a separate data set. BAssign at least three tracks to the
smallest area (five for the 2314). All tracks in an area must be contiguous. You
can use up to six areas. Divide the number of tracks (T) among the areas you
select. The formula is based on areas of equal size. More tracks will be needed
if T is not divided equally.

Intermediate Storage Assignment Example

Determine T for 2301 using 4 intermediate storage data sets, variable-length rec-
ords; maximum length 120, estimated input data set size 25500 records.

T = 25500(4) + 8 = 102008 = 227
18000(3) 450
120

Divide T among the 4 data sets: 57, 57, 57, 56.

If the sort/merge program has less than 44K bytes of main storage to execute
in, you may have to increase the value of T. If sort/merge has 12K bytes of main
storage, you should increase T by about 50%. If main storage is between 12K and
44K, the percentage of increase is correspondingly less.

For information on assigning intermediate storage for efficient program opera-
tion, refer to "Section 4: Efficient Program Use."

Section 2: How to Use the Sort/Merge Program

43

2314 (Crisscross Technique) Intermediate Storage

Use the following formula to calculate the approximate total number of tracks (T)
required to complete a sort when intermediate storage is on a 2314 and the criss-
cross sequence distribution technique is used:

Formula 5 T = 1.258
k
where:
S is the number of records in the input data set, either actual or approximate.
k=B
L
where:

B is 7,000
L is the number of bytes in each record in the input data set.

For variable-length records, L is the maximum record length. Use only the
integer portion of k. Disregard the remainder, whatever its value. If
the formula yields k=0, use the value 1.

When the input data set is om 2314, and you know how much space it occupies,
you do not need to use the above formula to determine intermediate storage space.
Assign intermediate storage space that is at least 25% larger than the space occu-
pied by the input data set.

If the data set tends to be ordered in reverse of the desired output sequence,
more intermediate storage space is necessary. Conversely, if the data set tends
to be ordered in the desired sequence, less space is required. Also, if the sort/
merge program is assigned less than 44K bytes of main storage in which to execute,
you may have to increase the value of T. If sort/merge has 24K bytes of main
storage, you should increase T by about 50%. If main storage is between 24K and
44K, the percentage of increase is correspondingly less.

The sort/merge program requires a minimum of six 2314 areas when the crisscross
technique is used and permits a maximum of 17. (When the balanced technique is
“used, the minimum number of 2314 areas is three.) Each area must contain at least
five tracks. All tracks in an area must be contiguous.

Efficient assignment of 2314 space is discussed in "Section 4: Efficient Pro-
gram Use."

4y

S

Intermediate Storage Assignment Formulas—Summary

Device Types for Intermediate Storage

INPUT INTERMEDIATE STORAGE

7- and/or 9-track tape
or

2311 disk
or

2301 drum
or

2314 facility

7-track tape

9-track tape

or
2311 disk

or
2301 drum

or
2314 facility

Any device but 7-track tape

o o — . S . e S S o F— o S— . S R e
o s o v s —— — —— ——— — —— E— —— — — v—— . —]

b e e s e e e e it e e s s e s e, it e

NUMBER OF TAPES REQUIRED FOR INTERMEDIATE STCRAGE (N)

Formula 1 n = 2(x+1) -- for the balanced technique, mraximum n=32, maximum input 15
reels.

X+2 -- for the oscillating technique, maximum n=17, maximum input
15 reels.

3 -- for the polyphase technique, maximum n=17, maximum input 1
reel.

Formula 2 n

Formula 3 n
where:

X is the number of tapes that would be required to contain the input data set
at sort blocking.

TOTAL NUMBER OF TRACKS REQUIRED FOR DIRECT ACCESS INTERMEDIATE STORAGE

Formula for 2301, 2311 and 2314 with balanced technique

Formula 4 T = 5(N) + 2N
K (-1)

Formula for 2314 with crisscross technique

Formula 5 T = 1.25S
k

where:
N is the number of intermediate storage areas
' 3<N<6 for 2311, 2301 and 2314 with the kalanced technique

6<N<17 for 2314 with crisscross technique

is the number of input records

w
|

B
L

B 1is 3,400 for the 2311
18,000 for the 2301
7,000 for the 2314
I is the input record length (maximum length for variable-length records)

Note: Use only the integer portion of k. Never round upwards. If k = 0, use 1.

Section 2: How to Use the Sort/Merge Program

45

N

Job Control Language for Sort/Merge

When the sort/merge program is initiated via the system input stream, it requires
a JOB statement, an EXEC statement, and DD statements.

JOB STATEMENT

The JOB statement for a sort/merge job is a standard System/360 Operating System
JOB statement.

'(7/jobname JOB accounting info,programmer name, etc.

EXEC STATEMENT

The EXEC statement identifies either a sort/merge cataloged procedure or the sort/
merge program. The statement

PGM=SORT
//stepname EXEC ,PARM=cptional parameters
PGM=IERRCO00 discussed later

identifies the sort/merge program. The statement

PROC=SORT

//stepname EXEC PROC=SORTD , PARM=optional parameters discussed
SORT later
SORTD

identifies a sort/merge cataloged procedure. The procedures, SORT and SORTD are
shown later in this section under "Initiating Sort/Merge." The PROC= notation
merely serves as a reminder that a cataloged procedure is being used.

PARM Field Options

NO

BALN [XXXXXX an] cc

P = OSCL ,CORE=optional main s MSG={CP
POLY storage value AC

CRCX AP

The first PARM field option specifies a sequence distribution technique to be used
by the sort/merge program. If the intermediate storage medium is tape, BALN means
use the balanced tape technique, OSCL means use the oscillating tape technique,
and POLY means use the polyphase tape technique. If the intermediate storage
medium is on a 2314 storage facility, BALN means use the balanced direct access
technique, CRCX means use the crisscross direct access technique.

Note: You cannot choose a sequence distribution technique if intermediate storage
is on 2311 or 2301; sort/merge always uses the balanced technique. There are cer-
tain restrictions on your choice of a technique for the 2314:

e If less than six work areas are provided, the sort/merge program always uses
the kalanced technique.

e If more than six work areas are provided, the program uses the crisscross
technique.

e If exactly six work areas are provided, the program uses the balanced tech-
nique unless CRCX is specified in the PARM field.

Section 2: How to Use the Sort/Merge Program

47

You should be extremely cautious when forcing the sort/merge program to use a spe-
cific technique. The program tries to select the most efficient technique for a
given application. If it is forced to use another, per@ormance may not be as

efficient. Refer to Table 1 in Section 1 for informatidn about the requirements ~
of the sequence distribution techniques.
The second PARM field option is an optional main storage value which will tem-
porarily override the sort/merge storage allocation set up at system generation
time. Refer to "Altering the Main Storage Allocation" in Section &.
You can use the third PARM field option to temporarily override the message
option specified at system generation time. The option is requested by MSG=xx.
Valid entries for xx are: o *
. ““\.\-_.
® NO - no messages are printed.
® CC - critical messages only are printed. They appear on the system console. -
®* CP - critical messages only are printed. They appear on the printer.
® AC - all messages are printed. They appear on the system console.
¢ AP - all messages are printed. They appear on the printer.
DD STATEMENTS
If you do not use a sort/merge caﬁéioged procedure to invoke the sort/merge pro-
gram, you must include system DD statements in the input stream. These are the DD
statements that would be contained in the cataloged procedure. They are:
//SYSPRINT DD used by the linkage editor. Include this statement when your
routines that require link editing are included in the i
application. ~—
//SYSLMCD DD defines a data set that contains output from the linkage edi-
: tor. Include this statement when your routines that need link
editing are included in the application.
//8YSuUT1 DD used as a work area by the linkage editor. Use this statement
when your routines that must be link edited are included.
//SYSLIN DD defines a data set that contains input to the linkage editor.
Use this statement when your routines that require link edit-
ing are included.
//SORTLIB DD defines a data set that contains load modules for the sort/
merge program. Always include this statement.
//S8YSoUuT DD used as the system output data set. Always use this
statement.
The following DD statements are required whether sort is initiated directly or
through a cataloged procedure:
//SORTIN DD defines the input data set for a sorting application. Not
: required for a merge-only application. -
//SORTINO1 DD define the input data sets for a merging application.
—————————— Not required for a sorting application.
//SORTIN16 DD
//SORTWKO1 DD define intermediate storage data sets for a sorting
e ———— application. Not required for a merging application.
.......... N
//SORTWK32 DD

48

//SORTOUT

//SORTMODS

//SORTCKPT

DD defines the output data set for sorting and merging

applications.

DD defines a temporary partitioned data set large enough to con-
tain all of your modification routines that appear in the

input stream for a given application.

If your routines are

not in the input stream, this statement is not required. If
your routines are on libraries, DD statements defining the
libraries must be included.

DD defines a data set for checkpoint records.

If you are not

using the checkpoint facility this statement is not required.

REQUIRED DD STATEMENT PARAMETERS

The sort/merge program requires that certain parameters be included in the DD

statements described above.

These parameters, the conditions under which they are

required, a summary of the information contained in them, and the value assumed

(default) if the parameter is not included are shown in Table 2.

and subparameters which are not required are not discussed

The parameters

eTable 2. Summary of DD Statement Parameters Required by the Sort/Merge Program
) 1 T T 1
| PARAMETER | CONDITION UNDER WHICH REQUIRED | SUMMARY OF PARAMETER VALUE | DEFAULT VALUE |
1 i 4 4 4
1) k] T 1
DSNAME	When the DD statement defines	Specifies the fully	The system
	a labeled input data set	qualified name or the	assigns a
	(eig., SORTIN), or when the	temporary name of the	unique name.
	data set being created is to	data set.	
	be kept or cataloged (e.g.,		
	SORTOUT), or passed to another		
	step.	!	
b + + i {			
DCB	When tape is used. for	specifies information used	----
	the input or output data set,	to £ill the data control	
	or when 7-track tape is used	tlock (DCB) associated	
	for intermediate storage.	with the data set.	
L 4 i 1 d			
]] T) 1			
ONIT	When the input data set is	Specifies (symbolically	——-
	neither cataloged nor passed,	or actually) the type i	
	or when the data set is being	and quantity of I/0O units	
	created.	required by the data set.	
[[1 1			
L]] L] 1 1			
SPACE	Wwhen the DD statement defines	Specifies the amount of	——-
	a new direct access data set.	space needed to contain	
		the data set.	
: = + {			
VOLUME	When the input data set is	Specifies information used	----
	neither cataloged nor passed,	to identify the volume or	
11	for multi-reel input, or when	volumes occupied by the	
	the output data set is on	data set.	
	direct access and is to be kept		
	or cataloged.		
[= : 1 1			
LABEL	When the default value is not	Specifies information	The system
	applicable.	about labeling and	assumes
		retention for the data	standard
		set.	labeling.
b + : 1 {			
DISP	When the default value is not	Indicates the status and	The system
	applicable.	disposition of the data	assumes (NEW,
		set.	DELETE)
L L | L J

Section 2:

How to Use the Sort/Merge Program 49

A full description of other DD statement parameters and subparameters is con-

tained in the publication IBM System/360 Operati

ng System: Job Control Language,

Form C28-6539.

Table 3 is a summary of the DCB subparameters

that are required by the sort/

merge program if the DCB parameter is used. A more detailed discussion of these

and other DCB subparameters is contained in the

publication IBM System/360 Operat-

ing System: Supervisor and Data Management Macro Instructions, Form C28-66L47.

e Table 3. Summary of DCB Subparameters Required

by the Sort/Merge Program

T T T T
| SUBPARAMETER | CONDITICN UNDER WHICH REQUIRED | SUMMARY OF SUBPARAMETER VALUE|DEFAULT VALUE
8 1 [[

1

|
L] 1 T ¥ ‘jl
DEN	When the data set is located	Specifies the density at 1200 bpi	
	on a 7-track 2400-series tape	which the tape was recorded.	
	unit.	I	
F t i } i			
TRTCH	When the data set is located	[Specifies the technique used [Converter not	
lon a 7-track 2400-series tape	to record 8-bit bytes on a	used, trans-	
	unit.	7-track tape.	lator not
		used, odd	
	,' parity.		
) 1] 1) 1			
RECFM	When the DCB parameter is	Specifies the format of the [----	
	required, except on SORTWK	records in the data set.	
	statements.		
b t	+ !		
LRECL	When the DCB parameter is	Specifies the maximum length	--—-
	required, except on SORTWK	(in bytes) of the logical	
	statements. Not required for	records in the data set.	
	fixed-length unblocked		
	records.		
b : { { :			
BLKSIZE	When the DCB parameter is	Specifies the maximum length	----
	required, except on SORTWK	(in bytes) of the physical	
	statements.	records in the data set.	
L L 1 1 J

Figure 11 illustrates the order in which cont
the input stream.

50

rol statements must be placed in

r/ Next JOB staterent or null statement

(Subsequent job steps, if any

(9* delimiting statement

(bata for your modification routines, if any

Your modification routines, if any, in the same order they
will be used

rﬁND statement

MODS statement, if needed
RECORD statement, if needed
SORT or MERGE statement

A(?/SYSIN DD *

(bD statements: SORTIN, SORTCUT, SORTWK, SORTMODS, etc. as needed

(%XEC statenent

{freceding job steps, if any-

r&OB statement

Arrangement of Statements for Sort/Merge Execution

Each of the DD statement types required by the sort/merge program are discussed
in the following text. Examples of the statements are included.

SORTIN DD Statement

For a sort, the SORTIN data set may be cataloged or uncataloged, or it may be
inserted by your routine at exit E15 (see "Section 3: Program Modification").
The SORTIN data set may not be a DD DUMMY.

SORTIN DD Statement

This example shows DD statement parameters that define a previously cataloged
nput data set:

DD DSNAME=INPUT,DISP=(OLD,DELETE), X
DCB=(RECFM=FB, BLKSIZE=800, LRECL=80)

R S ————

_
e Figure 11.
S’
DD _Example 1:
L]
|
I
|i
|
| #//SORTIN
|77
|
L
DSNAME
DISP
DCB
RN

causes the system to search the catalog for a data set with the
name INPUT. Wwhen the data set is found, it is associated with the
ddname SORTIN. The control program obtains the unit assignment and
volume serial number from the catalog and types a mounting message
to the operator if the volume is not already mounted.

indicates that the data set is passed or cataloged (OLD) and that
it should be deleted (DELETE) after the current job step.

~ indicates that the data set contains fixed-length blocked records

(RECFM=FB) with a block size of 800 bytes and a record length of 80
bytes.

Section 2: How to Use the Sort/Merge Program

51

If the input data set is contained on more than one reel of magnetic tape, the
VOLUME parameter must be included on the SORTIN DD statement to indicate the seri-
al numbers of the tape reels. 1In the following volume parameter example, the
input data set is on three reels that have serial numbers 75836, 79661, and 72945.

DD Example 2: Volume Parameter on SORTIN DD

r
| VOLUME=SER=(75836,79661,72945)
L

b e ol

When input to the sort/merge program is a concatenated data set, all data sets
in the concatenation must have identical attributes. If they do not, results are
unpredictable. This causes sort to terminate if an actual data set size appears
in in the SIZE parameter of the SORT control card because of the ensuing record
count off condition.

SORTINO1 —-— SORTIN16 DD Statements

These DD statements define the input data sets for a merge operation. They must
be numbered in ascending sequence. SORTINO1 is the name of the first DD state—
ment; SCRTINO2 is the name of the second DD statement, etc. No numbers can be
skipped. The maximum block size and the maximum record length of all the data
sets to be merged must be defined in the SORTINO1 DD statement. RECFM and LRECL
must be the same for all input data sets. Mixtures of fixed- and variable-length
records are not allowed. Fixed-length records must all be of the same length.

DD Example 3: SORTINO1 -- SORTINO3 DD Statements for a Merge

] 1
| 7/SORTINO1 DD DSNAME=MERGE1l,VOLUME=SER=000111,DISP=CLD, X |
|77 LABEL=(,NL) ,UNIT=2400, X |
V44 DCB=(RECFM=FB, LRECL=80,BLKSIZE=240) |
| //SORTINO2 DD DSNAME=MERGE2,VOLUME=SER=000121,DISP=0OLD X |
|77 LABEL=(,NL),UNIT=2400, X |
|77 DCB=(RECFM=FB, LRECL=80,BLKSIZE=240) |
| //SORTINO3 DD DSNAME=MERGE3,VOLUME=SER=000131,DISP=0LD, X |
|77 LABEL=(,NL) ,UNIT=2400, X |
|77 DCB=(RECFM=FB, LREC1=80,BLKSIZE=240) |
L d
DD Example 4: SORTINO1 and SORTINO2 DD Statements for a Merge

] 1
| //SORTINOL DD DSNAME=INPUT1,VOLUME=SER=000101, X |
|77 UNIT=2301,DISP=0LD,DCB=(RECFM=VB, X |
|77 LRECL=240,BLKSIZE=2400) |
|//SORTINO2 DD DSNAME=INPUT2,VOLUME=SER=000201, X |
|77 UNIT=2301,DISP=0LD,DCB=(RECFM=VB, X |
|77 LRECL=240,BLKSIZE=2400) |
L J

SORTWKO1 -— SORTWK32 DD_Statements

These statements define the intermediate storage data sets for a sort operation.
For a merge-only operation, these statements are not required. Intermediate

. storage data sets can be on tape or direct access devices but not on a mixture of
both. Your selection of an intermediate storage device type is not related to the
device types used for input or output with one exception: seven-track tape cannot
be used for intermediate storage unless the input device is also 7-track tape.
Refer to "Intermediate Storage Space Requirements" in this section for information
about how much intermediate storage is required for a particular application.

52

If you are using the checkpoint/restart facility and may be making a deferred
restart, you must make the following two additions to each of your SORTWK DD
statements so that the sort work data sets will not be lost:

DSNAME=anyname
DISP=(NEW,DELETE, KEEP)

Thus a complete SORTWK DD statement for deferred restart might be:

1

| 7/ SORTWKO1 DD DSNAME=WORK1,UNIT=2311,SPACE(TRK, (20),,CONTIG), X
|77 DISP=(NEW,DELETE, KEEP)

L

el ——

With this DD statement, the data set will ke kept, if the job step aborts, and
will be in the system until the step has been successfully rerun or until the data
set has been deleted by some other means.

When the intermediate storage data sets are on direct access devices, only the
primary space allocation is used by sort/merge and the space must be contiguous.

The ddnames for intermediate storage data sets must be numbered in ascending

sequence. SORTWKO1 must be the first, SORTWK02, the second, etc., and no numbers
can be skipped.

DD Example 5: SORTWKO1 DD Statement Defining a Tape Intermediate Storage Data Set

r
| //SORTWKO1 DD UNIT=2400,LABEL=(,NL)
L

b e o

These parameters specify an unlabeled data set on a 2400 series tape unit. The
system assigns a unique name to the data set because the DSNAME parameter is
omitted. Because the DISP parameter is omitted, the system assumes DISP=(NEW,
DELETE); the data set has not been previously cataloged and it will be deleted at
the end of the current job step. The disposition PASS is not allowed for a SORTWK
data set.

DD _Example 6: SORTWKO1l DD Statement Defining a Direct Access Data Set for Inter-
mediate Storage

; .
| //SORTWKO1 DD UNIT=2311,SPACE=(TRK, (200),,CONTIG)
L

b e =

UNIT specifies a 2311 disk. The LABEL parameter is omitted. The default is
standard labels.

SPACE specifies 200 contiguous tracks for the data set.

The omission of the DSNAME parameter causes the system to assign a unique name
to the data set. The DISP parameter is omitted; the system assumes NEW, DELETE.

Section 2: How to Use the Sort/Merge Program

53

SORTOUT DD Statement

This DD statement is used to define all the characteristics of the output data

N’
set.
DD Example 7: SORTOUT DD Statement
] 1
| 7/ SORTCUT DD DSNAME=OUTPT,UNIT=2400,DISP=(NEW,CATLG), X |
|77 DCB=(RECFM=FB, LRECL=90,BLKSIZE=900) |
L]
DSNAME The data set is to be called OUTPT.
DISP The data set is unknown to the operating system (NEW) and it is to be
cataloged (CATLG) under the name OUTPT. -
UNIT indicates that the data set is on a 2400 series tape unit.
DCB specifies a fixed-length blocked data set with a record length of 90
bytes and a block size of 900 bytes.
SORTMODS DD Statement
This statement is required if your routines are included in the system input
stream. It must define a temporary partiticned data set large enough to hold all
your routines that appear in the input stream. The sort/merge program transfers
your routines to the SORTMODS data set before they are link edited for execution.
If all your routines are located in libraries, the SCRTMODS DD statement is not
required, but DD statements defining the libraries must ke included. /
DD Example 8: SORTMODS DD Statement Defining a SORTMODS Data Set on 2311 ~
r 1
| 7/ SORTMCDS DD UNIT=2311,SPACE=(TRK, (10,,3)) |
L J
These parameters allot ten tracks of a 2311 disk to the SORTMODS data set.
Space for three directory blocks is also requested.
SORTCKPT DD Statement
The SORTCKPT data set may be assigned on any device that operates with BSAM. Pro-
cessing can be restarted from the last checkpoint taken. If the MOD disposition
is specified for the checkpoint data set, processing can be restarted from the
checkpoint taken at the start of the sort phase as well as the last checkpoint
taken.
DD Example 9: SORTCKPT DD Statement
) 1
| 77/ SORTCKPT DD DSNAME=CHECK,VOLUME=SER=000123,DISP=(NEW,KEEP), X |
\77 UNIT=2400,DCB=(RECFM=U,BLKSIZE=800) |
L . L] J
S’

54

Job Control Language Statements for Sort/Merge—Summary

T T L 1
|Statement | Purpose |When Required |
L L 1 1
1) L) 1 1
| 7/ jobname Job |Introduces the job. |Always. |
L 1 | d
1)] 1]|
| 7/ stepname EXEC |Introduces the step. |Always. |

//SORTIN DD |Defines input data set for a sort. |For a sort, always unless LINK,
| | ATTACH, or XCTL is used to

| |invoke sort and the input data
| |set is inserted by your routine
| |at sort/merge exit E15. Not

| |used for a merge.

Il 4

I

|

(]

1

//SORTINO1-16 DD
|Not used for a sort.
}
.]
//SORTWK01-32 DD |Define intermediate storage data |For a sort, always.
|sets for a sort. |[Not used for a merge.
L 1

b

Defines sort/merge output data set.|Always, unless LINK, ATTACH, or
|XCTL is used to invoke sort and
|your routine disposes of
joutput via sort/merge exit E35.
1

|

|

|

|

|

|

t 1

Define input data sets for a merge.|For a merge, always. |
]

4

1

|

|

4

//SORTOUT DD |
|

P e com e s oo

L]

//SORTMODS DD |Defines a temporary data set for |When you supply modification
|your modification routines in |routines through the system
| SYSIN. |input stream.

1 1
L) L]

//SORTCKPT DD |pDefines data set for checkpoint |When you use the checkpoint
|records. |facility.
i 1
L) v

//SYSIN - DD * |Indicates that data set containing |Always.

|sort/merge control statements)
|follows in input stream.
L

!

b e

T
/* |Marks the end of SYSIN data set. |Always.
L 1

|
|
|
|
|
|
[l
)
|
|
L
)
|
|
L
L]
|
|
|
|
L
1
|
|
|
L
L]
|
|
L
i
|
|
|
[
1)
|
I
|Shaded statements are provided by SORT or SORTD cataloged procedure.
L

|
|
4
|
|
|
|
1
1
|
|
|
i
|
|
|
4
1
|
4
i)
|
J

Section 2: How to Use the Sort/Merge Program 55

reme T e per

RN

have the

JCL and Sort/Merge Statement Examples

Following are a number of examples showing all the JCL and sort/merge statements
necessary to accomplish a particular job. The sort/merge control statements shown

same operands as those illustrated and explained at the end of the topic

"Defining the Sort or Merge" in this section.

Example 1 -- Sort
r L) T T T :‘l
| Input | Output | Intermediate | User | Optioms |
| | | Storage | Modifications | |
5 + + 1 + 1
Blocked -	Blocked	Four	None	FORMAT=xx
fixed-length=>	fixed-length	9-track		for control
records on	records on	tapes		fields of
9-track tape	9-track tape			like format.
				Estimated
i				data set
				size.
= L L L L J				
77EXAMP1 JOB AL402, PROGRAMMER 01				
//STEP1 EXEC SORTD' 02				
//SORT .SORTIN . DD DSNAME=INPUT,VOLUME=SER=000101, X 03				
\77 UNIT=2400,DISP=(OLD,DELETE), X oy				
i77 DCB=(RECFM=FB, LRECL=80, X 05				
177 BLKSIZE=800) 06				
.	//SORT .SORTOUT DD DSNAME=OUTPUT,UNIT=2400,DISP=(NEW, X 07			
177 CATLG) , VOLUME=SER=102,DCBE= (RECFM=FB, X 08				
77 LRECL=80, BLKSIZE=800) 09				
//SORT.SORTWK01 DD UNIT=2400 10				
//SORT.SORTWKO02 DD UNIT=2400 11				
//SORT.SORTWK03 DD UNIT=2400 12				
//SORT.SORTWKO4 DD UNIT=2400 13				
7/SORT .SYSIN DD * 14				
<SORT FIELDS=(1.0,6.0,RA,28,5,D),FORMAT=CH,SIZE=E10000 15				
END 16				
7% . 17				
[4
01 The JOB statement introduces this job to the operating system. The card
contains accounting information and programmer identification. Message
level 0, indicating that only incorrect control statements and associated
diagnostic messages are to be printed, is specified by default.
~02 The EXEC statement invokes the cataloged procedure SORTD. It can be
written as shown or as EXEC PRCC=SORTD. The contents of the two cata-
loged procedures supplied by IBM for sort/merge are shown in Section 2.
The SORT cataloged procedure could be used for this example, but it
causes allocation of linkage editor data sets which are not needed since
no user-written modification routines that require link editing are
included. The SORT procedure is therefore less efficient than the SORTD
procedure for this example.
The remaining DD statements are being added to the SORTD procedure for
this job step only. Therefore they are qualified by the stepname (SORT)
of the SORTD proceudre. The SORT procedure also has the stepname SORT.
03-06 The SORTIN DD statement describes an input data set named INPUT. The

data set is on a 9-track tape that has the serial number 000101. The
DISP parameter indicates that the data set is known to the operating sys-
tem and that it should be deleted from the system after this job step.
The DCB parameter shows that the data set comnsists of fixed-length rec-
ords with a record size of 80 and a block size of 800.

Section 2: How to Use the Sort/Merge Program

57

07-09

10-13

14

15-16

17

58

The SORTOUT DD statement describes the output data set. OUTPUT will be

recorded on a 9-track tape drive and will be cataloged after it is

created. The data set will be placed on tape volume number 102. OUT- e
PUT's format, record length and block size are the same as those for

SORTIN.)

These DD statements define temporary intermediate storage data sets. The
three data sets are on 9-track tape drives. No other parameters are

necessary since the standard system default options are acceptable for
this application.

The SYSIN DD * statement informs the operating system that a data set
follows in the input stream.

Sort/Merge control statements described in Example 1 at the end of the
topic "Defining the Sort or Merge." :

The /* delimiter statement marks the end of the SYSIN data set.

PN

Example 2 —— Sort

r -
|Example 2 is a sorting application exactly like that shown in Example 1 except

|that a cataloged procedure is not used.
only the EXEC statement, which is different from Example 1, and the
Note that the DD statements need not be

|directly.

|two extra DD statements are described.

|qualified by the word SORT.
L

The sort/merge program is called

1
]
I
|
|
|
' 1
| /7EXAMP2 JOB A402,PROGRAMMER |
| 7/STEP1 EXEC PGMFIERRCOOO,REGION=26K 01 |
| /7/SYSOUT DD SYSOUT=A 02 1
| //SORTLIB DD DSNAME=SYS1.SORTLIB,DISP=SHR 03 |
| 7/SORTIN DD DSNAME=INPUT, VOLUME=SER=000101, X |
|77 UNIT=2400,DISP=(0OLD,DELETE), X |
|77 DCB= (RECFM=FB, LRECI=80, X |
177 BLKSIZE=800) |
| #//SORTOUT DD DSNAME=QUTPUT, UNIT=2400,DISP=(NEW, X |
|77 CATLG) , VOLUME=SER=102,DCB=(RECFNM=FB, X |
V24 LRECL=80, BLKSIZE=800) |
| /7 SORTWKO1 DD UNIT=2400 |
| 7/SORTWKO02 DD UNIT=2400 |
| //SORTWKO3 DD UNIT=2400 [
| //SORTWKOU4 DD UNIT=2400 |
| 7/SYSIN DD * [
| SORT FIELDS=(1.0,6.0,A,28,5,D), FORMAT=CH,SIZE=E10000 |
| END i I
|/* |
L J
01 This EXEC statement initiates the sort/merge program and indicates that
it needs a 26K region in which to operate.
02 This DD statement directs the system output to system output class A.
03 This DD statement defines the data set containing the sort/merge program

modules.

Section 2: How to Use the Sort/Merge Program 59

Example 3 -- Merge
[i T - T T 1
| Input Output Intermediate | Userx Options
I Storage | Modifications.
L 1
¥ 1
| Blocked Blocked None is None FORMAT=xxX
| fixed-length fixed-length required for for control
| records on records on a merge fields of |
| four 9-track one 9-track like
| unlabeled tape format.
| tapes | | | Estimated
| | | | data set |
| |] | size. |
.l 1 1 1 1. {
| //EXAMP3 JOB AL402,PROGRAMMER 01
| 7/STEP1 EXEC SORTD 02
| //SORT.SORTINO1 DD DSNAME=MERGINO1l,VOLUME=SER=000111, X 03 |
V24 DISP=0LD,LABEL=(,NL) ,UNIT=2400, X oY
\77 DCB=(RECFM=FB, LRECL=80,BLKSIZE=240) 05
| //SORT.SORTINO2 DD DSNAME=MERGINO2,VOLUME=SER=000222, X 06
|77 DISP=0LD, LABEL=(, NL) ,UNIT=2400, X 07
V44 DCB=(RECFM=FB, LRECL=80,BLKSIZE=240) 08
| //SORT.SORTINO3 DD DSNAME=MERGINO3,VCLUME=SER=000333, X 09 |
|77 DISP=0OLD, LABEL=(,NL) ,UNIT=2400, X 10
177 : DCB=(RECFM=FB, LRECL=80,BLKSIZE=240) 11
| //SORT.SORTINO4 DD DSNAME=MERGINO#4,VCLUME=SER=000444, X 12
177 DISP=0LD,LABEL=(,NL) ,UNIT=2400, X 13
\77 DCB=(RECFM=FB, LRECL=80, BLKSIZE=240) 14
| //SORT.SORTOUT DD DSNAME=MERGOUT,VOLUME=SER=000101, X 15 |
|77 DISP=(NEW,KEEP) ,LABEL~= (,NL) , UNIT=2400, X - 16 |
|77 DCB=(RECFM=FB, LRECL=80, BLKSIZE=240) 17 |
| //SORT .SYSIN DD * 18
| MERGE FIELDS=(1.0,6.0,A,28,5,D),FORMAT=CH,SIZE=E10000 19
| END 20
| 7% 21 |
L J
01-02 The basic JOB and EXEC statements. The EXEC statement invokes the cata-
loged procedure SORTD.
03-14 These DD statements describe the merge input data sets. They are all on
9-track unlabeled tape and consist of fixed-length records with a block-
ing factor of three. The total number of records on all of the data
sets is about 10,000 as indicated by the SIZE parameter on the MERGE
statement.
15-17 The result of the merge is recorded on 9-track tape at the same blocking
factor and in the same format as the input data sets.
18 A data set follows in the input stream.
19-20 Sort/Merge control statements described in Example 2 at the end of the
topic "Defining the Sort or NMerge."
21 Marks the end of the SYSIN data set.

60

Example 4 —— Sort
r T T " T T - 1
| Input | Output | Intermediate |User |Options |
| | | Storage |Modifications | |
b t . + ¢ {
Fixed-length	Fixed-length	Three 2311	Four - two change	Estimated
blocked	blocked	areas of 540	record lengths,	data set
records on	records on	tracks each	one changes con-	size
9-track tape	9-track tape,		trol fields, omne	
	same unit as		decides what to do	
	input data set		1if Nmax is exceeded	
L L 1 J				
L 1				
77EXAMPU JOB A402,PROGRAMMER 01				
7//STEP1 EXEC SORT 02				
7//SORT.SORTIN DD UNIT=2400,DSNAME=INPUT,VOLUME=SER=000101, X 03				
77 DCB=(RECFM=FB, LRECL=120, X o4				
77 BLKSIZE=480),DISP=(OLD,DELETE) 05				
7/SORT.SORTOUT DD UNIT=AFF=SORTIN,DSNAME=CUTPUT, X 06				
177 VOLUME=SER=000101, DCB= (RECFM=FB, X 07				
77 LRECL=80, BLKSIZE=320) ,pISP=(NEW,PASS) 08				
//SORT.SORTWKO1 DD UNIT=2311,SPACE= (TRK, (540), ,CCNTIG) 09				
//SORT.SORTWK02 DD UNIT=2311,SPACE=(TRK, (540), ,CONTIG) 10				
//SORT.SORTWK03 DD UNIT=2311,SPACE=(TRK, (540),,CONTIG) 11				
//SORT.MODLIB DD DSNAME=YOURRTNS,DISP=CLD i 12				
//SORT.SORTMODS DD UNIT=2311,SPACE=(TRK, (10,,3)) 13				
//SORT.SYSIN DD * 14				
SORT FIELDS=(3.0,8.0,%ZD,E,40.0,6.0,CH,D),SIZE=E30000 15				
RECORD TYPE=F, LENGTH‘(lZO 100, 80) 16				
MODS E15=(E15,780, MODLIB,N) E16=(E16,1024,MODLIB), X 17				
E35=(ADDUP, 912,SYSIN), EGl—(CHGE 1000,SYSIN) 18				
E 19				
Object deck for ADDUP routine				
Object deck for CHGE routine				
7% 20				
L 4
01-02 The basic JOB and EXEC statements. The EXEC statement specifies the SORT

cataloged procedure because user-written routines that require link edit-

ing are included in the application. ;
03-05 This DD statement describes an input data set that consists of fixed-

length blocked records on 9-track tape. Each record is 120 bytes long

and the blocking factor is 4. The data set, which is already known to

the operating system, will be deleted after this job step.
06-08 This DD statement describes the output data set. UNIT=AFF=SORTIN means

that the data set is to be placed on the same unit as the input data set.

The output records have the same format as the input records, but they

are each 40 bytes shorter. The blocking factor is the same.
09-11 The next three DD statements describe three intermediate storage areas on

2311 disk. Each area contains 540 contiguous tracks.
12 Defines the data set that contains the E15 and E16 modification routines.
13 Defines a data set on which the ADDUP and CHGE routines will be placed.
14 A data set follows in the input stream.
15-19 Sort/Merge control statements described in Example 3 at the end of the

topic "Defining the Sort or Merge."
Objects decks for your modification routines must appear in the input stream in

numerical exit number order. ADDUP is the routine for exit E35, so it appears

first.

20

CHGE, the routine used at exit E61, appears second.

Marks the end of the SYSIN data set.

Secticn 2: How to Use the Sort/Merge Program 61

Example 5 -- Sort

. o St —— o —— — S~ w— —

k) T T 1 1
Input | output | Intermediate | Userx | Options |
| | Storage | Modifications | |
4]] 1 J
T H T N i
Fixed-length | Fixed-length | Four | Four - two | Estimated |
blocked | blocked | 9-track | change record i data set |
records on | records on | tapes | lengths, omne | size, |
two 9-track | one 9-track | | changes con- | Oscillating |
tape volumes | tape | | trol fields, | technique |
		one decides	forced.
		what to do if	
		Nmax is exceeded.	
i L L L %			
77EXANMPS JOB A402,PROGRAMMER 01			
7/STEP1 EXEC SORT,PARM='OSCL' 02			
7//SORT.SORTIN DD DSNAME=INPUT,VOLUME=SER=(000333,000343), X 03			
77) UNIT=2400,DISP=(OLD,DELETE), X o4			
77 DCB= (RECFM=FB, LREC1=120, X 05			
\77 BLKSIZE=480) 06			
//SORT.SORTOUT DD DSNAME=0OUTPUT,UNIT=2400,DISP=(NEW, X 07			
77 CATLG) ,VOLUME=SER=U456 ,DCB=(RECFM=FB, X 08			
V4 LRECL=80, BLKSIZE=320) 09			
//SORT.SORTWKO1 DD UNIT=2400 10 1			
//SORT.SORTWKO02 DD UNIT=2400 11			
//SORT.SORTWK03 DD UNIT=2400 12			
//SORT.SORTWKO4 DD UNIT=2400 13			
//SORT .MODLIB DD DSNAME=YOURRTNS ,DISP=0LD 14			
//SORT.SORTMODS DD UNIT=2311,SPACE=(TRK, (10,,3)) 15			
//SORT.SYSIN DD * 16 i			
SORT FIELDS=(3.0,8.0,ZD,E,40.0,6.0,CH,D),SIZE=E30000 17			
RECORD TYPE=F,LENGTH=(120,100,80) 18			
MODS E15=(El15,780,MODLIB,N),E16=(E16,1024,MODLIB,N), X 19			
E35=(ADDUP,912,SYSIN) ,E61=(CHGE,1000,SYSIN) 20			
END			
Object deck for ADDUP routine 22]			
Object deck for CHGE routine 23			
VA 24 |
L J
01 The basic JOB statement.
02 The EXEC statement specifies the cataloged procedure SORT. OSCL in the

PARM field directs the sort/merge program to use the oscillating tape
sequence distribution technique if it possibly can, whether or not it
considers the oscillating technique most efficient for this application.

03-06 Defines the

input data set.

Note that the SORTIN DD statement is pref-

aced by the step name of the SORT cataloged procedure because it and
other DD statements so prefaced are being added to the procedure for this
job step. The input data set consists of fixed-length blocked records on
two 9-track tape volumes numbered 000333 and 000343, respectively.

07-09 Defines the
length block

output data set.

The output data set also consists of fixed-

ed records. It is on one 9-track tape.

10-13 Defines four intermediate storage data sets cn 9-track tape. Since the
DSNAME parameter is omitted, the system will assign unique names to the

data sets.

62

S

e ad

e

14

15

16

17-21

22

23

24

Describes a data set that contains the E15 and E16 modification routines.

Defines a data set on which the ADDUP and CHGE routines will be placed.

A data set follows in the input stream.

Sort/merge control statements described in Example 3 at the end of the
topic "Defining the Sort or Merge".

The object deck for the ADDUP routine comes before the deck for CHGE.

The object deck for the CHGE routine.

SYSIN data. set delimiter.

Section 2:

How to Use the Sort/Merge Program 63

Example 6 -- Sort

fixed-length
records on
7-track
unlabeled tape

fixed-length
records on
7-track

| labeled tape
1

e s

tapes

Y-

T
Input Output Intermediate User |Options
Storage Modifications |
i
| v
Blocked Blocked Six 7-track None | FORMAT=xx for

| control fields
|of like format,
|estimated data
| set size.

L

o — — —— —— S — —

—— —— — — ——— — — a— a— — . e, s, e . e, el e, e 20

| 7/EXAMP6 JOB AL02,PROGRAMMER 01

| 7/STEP1 EXEC SORT : 02

| //SORT . SORTIN DD DSNAME=INPUT,VOLUME=SER=000101, X 03

177 UNIT=2400-2,DCB=(DEN=2,RECFM=FB, X oy

|77 LRECL=80, BLKSIZE=800, TRTCH=ET), X 05

|77 DISP=(0OLD,PASS) ,LABEL= (,NL) 06

| //SORT.SORTOUT DD DSNAME=QUTPUT,UNIT=2400-2,DISP=(NEW, X 07

|77 CATLG) , VOLUME=SER=102,DCB= (RECFM=FB, X 08

|77 LRECL=80, BLKSIZE=800,DEN=2, TRTCH=ET) 09

| //SORT.SORTWKO1 DD UNIT=2400-2,LABEL=(,NL),DCB=(DEN=2, X 10

|77 TRTCH=ET) 11

| //SORT.SORTWKO02 DD UNIT=2400-2,LABEL=(,NL),DCB=(DEN=2, X 12

177 TRTCH=ET) .13

| //SORT.SORTWKO03 DD UNIT=2400-2,LABEL=(,NL),DCB=(DEN=2, X 14

177 TRTCH=ET) 15

| //SORT.SORTWKO4 DD UNIT=2400-2,LABEL=(,NL),DCB=(DEN=2, X 16

177 TRTCH=ET) 17

| //SORT.SORTWK05 DD UNIT=2400-2,LABEI~(,NL),DCB=(DEN=2, X 18

|77 TRTCH=ET) 19

| //SORT.SORTWK06 DD UNIT=2400-2,LABEL=(,NL) ,DCB=(DEN=2, X 20

(V24 TRTCH=ET) 21

| 7//SORT .SYSIN DD * 22

| SORT FIELDS=(1.0,6.0,37,28,5,D),FORMAT=CH,SIZE=E10000 23

| END 24 |

| 7% 25 |

L J

01-02 Standard JOB and EXEC statements. The EXEC statement invokes the SORT
cataloged procedure. The SORTD procedure would be more efficient for
this application since there are no modification routines that need link
editing, but the SORT procedure can ke used.

03-06 The SORTIN DD statement defines the input data set. The data set is
named INPUT, it is on an unlabeled 7-track tape with a serial number
000101. The DCB subparameters indicate that the tape was recorded at
800 bpi, is composed of fixed-length blocked records. The TRTCH=ET sub-
parameter indicates that the tape was recorded with even parity and that
BCDIC to EBCDIC translation is required. The DISP parameter shows that
the data set is in existence and that it should be retained after this
job step. The data set is the first one or only one of this unlabeled
volume.

07-09 The SORTOUT DD statement defines the output data set. It is named OUT-
PUT, and is recorded on 7-track tape on a volume that has the serial
number 102. The other parameters on this statement are the same as
those on SORTIN, with the exception of DISP. DISP indicates that this
data set will be created in this job step and will be cataloged for
future reference by another job.

10-21 These DD statements define intermediate storage for the sort/merge pro-
gram. The storage is on six 7-track unlabeled tapes. These tapes are
to be recorded with even parity and BCDIC to EBCDIC translation.

22 A data set follows in the input stream

23-24 Sort/Merge control statements described in Example 1 at the end of the
topic "Defining the Sort or Merge."

25 * Delimiter statement marks the end of the SYSIN data set.

64

Example 7 -— Sort

r T T H H 1
| Input | Output | Intermediate | User | Options |
| | | Storage | Modifications | |
b + + t t 4
Fixed-length	Fixed-length	Three 2311	Exit E35	Exact
unblocked —	blocked)—	areas, 120	routine	data set
records on	records on	tracks each	shortens	size,
2311 disk	2311 disk		each record	message
			by 30 bytes	option
			as it leaves	
			the merge	
= e 4 L 4 __II				
77EXAMPT JOB A402, PROGRAMMER 01]				
7/STEP1 EXEC PROC=SORT, PARM="'MSG=CC” 02				
//SORT .SORTIN DD DSNAME=INFILE, VOLUME—SER‘INP21“ X 03 [
VZ4 ‘ UNIT=2311, DCB—(RECFM—F LRECL=80, X ou				
77 BLKSIZE=80),DISP=(OLD,DELETE) 05				
//SORT . SORTOUT DD DSNAME=OUTFILE,VOLUME=SER=DLIBO02, X 06				
177 UNIT=2311, DCB=(RECFM=FB, LRECL=50, X 07				
77 BLKSIZE?SOO),DISP=(NEW,KEEP), X 08				
77 SPACE=(TRK, (500,5)) 09 [
//SORT.SORTWKO1 DD UNIT=2311,SPACE=(TRK, (120),,CONTIG) 10				
//SORT.SORTWKO02 DD UNIT=2311,SPACE=(TRK, (120),,CONTIG) 11 b				
//SORT.SORTWKO3 DD UNIT=2311,SPACE=(TRK, (120),,CONTIG) 12				
//SORT.SORTMODS DD UNIT=2311,SPACE=(TRK, (10,,3)) 13				
//SORT.SYSIN DD * e 14				
SORT FIELDS=(10,5,CH,A),SIZE=10000 15				
RECORD TYPE=F,LENGTH=(80,,50) 16				
MODS E35=(E35,534,SYSIN) 17				
END 18				
Object deck for E35]				
7* 19				
L J
01 Standard JOB statement

02 The EXEC statement invokes the SORT cataloged procedure and specifies

that critical messages only are to be printed and they are to appear on
the console typewriter.

03-05 The input data set consists of fixed-length unblocked records on volume
INP214 on a 2311 disk storage drive. The data set will be deleted after
this job step.

06-09 The output data set is composed of fixed-length blocked records that

, will require 500 tracks of 2311 disk. Each time space is exhausted, 5
additional tracks will be allotted. The data set will be retained for
future reference.

10-12 Intermediate storage consists of three 2311 areas of 120 contiguous
tracks each.

13 This DD statement defines a data set large enocugh to contain the E35
routine which appears in object form in SYSIN. Ten disk tracks are
reserved for the partitioned data set plus three blocks of the

directory.
14 A data set follows in the input stream.
15-18 Sort/Merge control statements descrlbed in Example 5 at the end of the

topic "Defining the Sort Merge."

19 Delimiter statement marks the end of the SYSIN data set.

Section 2: How to Use the Sort/Merge Program 65

Example 8 -—- Sort

r T k] k) i) |
| Input | Output | Intermediate | User | Options |
| | | Storage | Modifications | |
b + + } 1 —- !
Variable-	Variable-	Six 2314	Initialization	Crisscross
length	length	areas	routine at	technique
blocked	blocked		exit E11 and	forced,
records on	records on		an Nmax error	Message option,
2314	2314		routine at E16	estimated data
			set size.	
1 ; 1 i L %				
//EXAMP8 JOB ALO02,PROGRAMMER 01				
7/STEPCNE EXEC SORT,PARM="'CRCX,MSG=CP* 02				
//SORT.SORTIN DD UNIT=2314,DSNAME=PAY413, X 03				
// VOLUME=SER=231401,DCB= (RECFM=VB, X ou				
Va4 LRECL=120,BLKSIZE=840) ,DISP=(OLD,KEEP) 05				
//SORT . SORTOUT DD UNIT=2314,DSNAME=PAY41l4, X 06				
/7 VOLUME=SER=231404,DCB= (RECFM=VB, X 07				
77 LRECL=120,BLKSIZE=840) ,DISP=(NEW,KEEP) 08				
//SORT.SORTWK01 DD UNIT=2314,SPACE=(TRK, (100),,CONTIG) 09				
//SORT.SORTWK02 DD UNIT=2314,SPACE=(TRK, (100),,CCNTIG) 10				
7/SORT.SORTWK03 DD UNIT=2314,SPACE=(TRK, (100),,CONTIG) 11				
//SORT.SORTWKO4 DD UNIT=2314,SPACE=(TRK, (100),,CONTIG) 12				
//SORT.SORTWKO5 DD UNIT=2314,SPACE=(TRK, (100),,CONTIG) 13				
//SORT.SORTWKO6 DD UNIT=2314,SPACE=(TRK, (100),,CCNTIG) iu				
//SORT . USERLIB DD DSNAME=JIMSMODS,DISP=0LD 15				
//SORT.SYSIN DD * 16				
SORT FIELDS(20,5,CH,A),SIZE=E25500 17				
Mobps E11=(E11,500,USERLIB,S),E16=(E16,554,USERLIB,N) 18				
RECORD TYPE=V,LENGTH=(120,,,60,80) 19				
END 20				
7% 21				
L]
01 The standard JOB statement.
02 The EXEC statement specifies the SORT cataloged procedure. The options
in the PARM field indicate that the program is to use the crisscross
sequence distribution technique if possible, that critical messages only
are to be printed and that they are to appear on the printer.
03-05 The SORTIN DD statement descrikes the input data set. Its name is
PAY413, it is on volume 231401 on a 2314, and consists of variable
length blocked ‘records. The data set is known to the operating system
and is to be retained after use.
06—08 This statement describes the output data set. The data set, named
© PAYU414, will be on volume 231404 of a 2314, will consist of variable
length blocked records, is being created in this job step, and is to be
retained in the system.
09-14 These statements define intermediate storage data sets. There are six
data sets of 100 contiguous tracks each and they are on 2314. Six data
sets is the minimum required for the crisscross technique.
15 Defines a data set called JINMSMODS which contains the E11 and E16 modi-
fication routines described on the MCDS statement. The data set is
known to the operating system and is not to be deleted after this job
step.
16 A data set follows in the input stream.
17-20 Sort/merge control statements described in Example 6 at the end of topic
"Defining the Sort or Merge."
21 Delimiter statement marking the end of the SYSIN data set.

66

Example 9 -- Merge

r i T T T T 1
| Input | Output | Intermediate | User | Options |
|] | Storage | Modifications | |
: + : t t {
variable—	Variable-	None	E35 routine	Exact input
length	length		shortens	data set
blocked	blocked		records and	size
records on	recoxrds on		E61 routine	
2301	2301		modifies	
			control field	
: L L 1 L 1				
7/EXAMPY JOB A402, PROGRAMMER 01				
7/STEP1 EXEC SORT 02				
//SORT.SORTINO1 DD DSNAME=WEEKLY,VOLUME=SER=000101, X 03				
77 UNIT=2301,DISP=0LD,DCB=(RECFN=VB, X oy				
V4 LRECL=240,BLKSIZE=2400) 05 1				
//SORT.SORTINO2 DD DSNAME=DAILY,VOLUME=SER=000113, X 06				
V24 UNIT=2301,DISP=(0OLD,DELETE), X 07				
77 DCB= (RECFM=VB, LRECL=240, BLKSIZE=2400) 08				
#//SORT.. SORTOUT DD DSNAME=WEEKA,VOLUME=SER=000111, X 09				
177 UNIT=2301,DISP=(NEW,KEEP), X 10				
77 SPACE=(TRK, (75,10)) ,DCB= (RECFM=VB, X 11				
177 LRECL=200,BLKSIZE=2000) 12				
7/SORT.USERLIB DD DSNAME=MYMODS,DISP=OLD 13				
//SORT . MODLIB DD DSNAME=XYZ,DISP=0OLD ‘ 14				
7/SORT.SYSIN DD * 15				
MERGE FIELDS=(1,6,CH,E),SIZE=8150 16 [
RECORD TYPE=V,LENGTH=(240,,200,,160) 17				
MODS E35=(CALC,800,USERLIB),E61=(E61,450,MCDLIB,N) 18				
END 19				
/ 20				
L 4
01-02 The basic JOB and EXEC statements.
03-05 The SORTINO1 DD statement describes one of two input data sets for the

merge. The data set, named WEEKLY, is on volume 000101 of a 2301. The

data set is known to the operating system and is to be retained. It

contains variable length blocked records with a maximum record length of

240 bytes and a blocksize of 2400.
06-08 The SORTINO2 DD statement describes the seccnd of two inputs to the

merge. It is named DAILY, is on volume 000113 of a 2301, is old and

will be deleted after this job step, and contains records of the same

format, length and block size as the WEEKLY data set.
09-12 The output from the merge will be a data set named WEEKA. It is new and

will be retained in the system on volume 000111 of a 2301. The data set

will be recorded on 75 drum tracks. If this space is not sufficient,

additional space will be allotted in blocks of ten tracks. The data set

consists of variable-length blocked records with a maximum record length

of 200 (see 1; on the RECORD statement) and a block size of 2000.
13 Defines the library on which the CALC routine for exit E35 resides.
14 Defines the library on which the E61 routine for exit E61 resides.
15 A data set follows in the input stream.
16-19 sort/merge control statements described in Example 4 at the end of the

topic "Defining the Sort or Merge."
20 Standard delimiter statement.

Section 2: How to Use the Sort/Merge Program 67

Example 10 -- Simple Merge
r T L} L}] L}
| Input | Output | Intermediate | User | Options |
| | | Storage | Modifications | |
I i + 1 + 1
Blocked	Blocked	None	None	Estimated
fixed-length	fixed-length			input data
records on 3	records on one			set size
7-track tapes	7-track tape			'
't 1 1 L 1 1				
7/EXAMP10 JOB A714,PROGRAMMER 01				
7/STEPA EXEC SORTD 02				
//SORT.SORTINO1 DD DSNAME=FILE1l,VOLUME=SER=000123, X 03				
77 UNIT=2400-2,DCB=(DEN=2,RECFM=FB, X ou				
\77 LRECIL=80, BLKSIZE=800, TRTCH=ET), X 05				
77 DISP=(OLD,DELETE) 06				
//SORT.SORTINO2 DD DSNAME=FILE2,VCLUME=SER=000225, X 07				
77 UNIT=2400-2,DCB=(DEN=2,RECFM=FB, X 08				
177 LRECL=80,BLKSIZE=800,TRTCH=ET), X 09				
\77 DISP=(OLD, DELETE) 10				
//SORT.SORTINO3 DD DSNAME=FILE3,VOLUME=SER=000179, X 11				
\77 UNIT=2400-2,DCB=(DEN=2,RECFM=FB, X 12				
77 LRECL=80,BLKSIZE=800,TRTCH=ET), X 13				
V4 DISP=(OLD, DELETE) 14				
7/SORT . SORTOUT DD DSNAME=FILE123,VOLUME=SER=000111, X 15				
\77 UNIT=2400-2,DCB=(DEN=2,RECFM=FB, X 16				
177 LRECL=80, BLKSIZE=800, TRTCH=ET), X 17				
77 DISP=(NEW,KEEP) 18				
//SORT.SYSIN DD # 19				
MERGE FIELDS=(1.0,6.0,3A,28,5,D),FORMAT=CH,SIZE=E10000 20				
END 21				
7* 22				
L J
01-02 Standard JOB and EXEC statements.
03-06 Defines one of three inputs to the merge. The data set's name is FILEl.

It is on 7-track tape with a serial number of 000123, and consists of

fixed-length blocked records. The TRTCE=ET DCR subparameter indicates

that the tape was recorded with even parity and that BCDIC to EBCDIC

translation is required.
07-10 Defines another of the inputs to the merge, a data set named FILE2.
11-14 Defines FILE3, the third input to the merge.
15-18 Defines the output data set which is nawed FILE123. The data set is to

be recorded on 7-track tape, volume 000111. The other parameters are

the same as those for SORTINO1, with the exception of DISP, which indi-

cates that the data set is new and is to be retained for future

reference.
19 Data set follows in the input stream.
20-21 Sort/merge control statements described in Example 2 at the end of the

topic "Defining the Sort or Merge."
22 Delimiter statement.

68

Example 11 -- Sort

) T T i) k) 1
| Input | Output | Intermediate | User | Options |
| | | Storage | Modifications | |
I + + 1 i .|
Fixed-length	Fixed-length	Eight 2314	One routine shortens	Exact data
blocked records	blocked records	areas of 20	records as they leave	set size
on 2314)	on 2314~	tracks each	the final merge phase	
L i L L i				
L 1				
7/EXAMP11 JOB B600, PROGRAMMER 01				
7/STEPI EXEC PRCC=SORT 02				
//SORT . SORTIN DD DSNAME=INPUT,UNIT=2314,VOLUME=SER=231401, X 03				
77 DCB=(RECFM=FE,LRECL=80,BLKSIZE=800), X o4				
V24 DISP=(CLD, DELETE) 05				
#/SORT. SORTWKOl DD UNIT‘2314 , VOLUME=SER=231402, X 06				
\77 SPACE= (TRK, (20),,CONTIG) 07				
//SORT.SORTWK02 DD UNIT—2314 VOLUME=SER=231403, X 08				
(V24 SPACE=(TRK,(20),,CONTIG) 09				
//SORT.SORTWKO03 DD UNIT=2314,VOLUME=SER=231404, X 10				
177 SPACE= (TRK, (20),,CONTIG) 11				
//SORT.SORTWKO4 DD UNIT=2314,VOLUME=SER=231405, X 12				
77 SPACE=(TRK, (20) , ,CONTIG) 13				
//SORT.SORTWKO0S5 DD UNIT=2314,VOLUME=SER=231406, X 14				
77 SPACE=(TRK, (20), ,CONTIG) 15				
//SORT.SORTWK06 DD UNIT=2314,VOLUME=SER=231407, X 16				
77 SPACE=(TRK, (20),,CONTIG) 17				
//SORT .SORTWKO07 DD UNIT=2314,VOLUME=SER=231408, X 18				
77 : SPACE= (TRK, (20),,CONTIG) 19				
//SORT. SORTWKOS DD UNIT=2314,VvOLUME=SER=231409, X 20				
77 SPACE=(TRK, (20), ,CONTIG) 21				
//SORT . SORTOUT DD DSNAME=OUTPUT,UNIT=2314, X 22				
77 VOLUME=SER=231410,DCB= (RECFM=FB, X 23				
V77 LRECL=50, BLKSIZE=500) ,DISP=(NEW,KEEP), X 24				
77 SPACE=(TRK, (200,10) ,RLSE) 25				
//SORT.SORTMODS DD UNIT=2314,SPACE=(TRK, (10,,2)) 26				
//SORT.SYSIN ' DD # 27				
SORT FIELDS=(10,5,CH,R), SIZE—10000 28				
RECORD TYPE=F, LENGTH—(SO,,SO) . 29				
MOBSW"E33“6E35 vvvvv 534,SYSIN) 30				
E 31 !				
Object deck for E35 routine				
7% |
L d
01-02 Standard JOB and EXEC statements.
03-05 Defines the input data set. It is named INPUT, is on 2314 volume

231401, consists of fixed-length, blocked records with a length of 80

bytes and a blocking factor of 10.
06—-21 These statements describe eight 2314 work areas. Each area consists of

20 contiguous tracks.

22-25 Defines the output data set. The data set, named OUTPUT, will be on
volume 231410 of a 2314 and will contain fixed-length blocked records.
Two hundred tracks- are requested for the data set; if the space is
exhausted, additional tracks are to be assigned in blocks of ten. When
the output data set is closed, unused tracks are to be released.

26 Defines a temporary data set on 2314 for the E35 routine.
27 A data set follows in the input stream. o
28-31 Sort/merge control statements described in Example 5 at the end of the

topic "Defining the Sort or Merge."

32 Delimiter statement.

‘Section 2: How to Use the Sort/Merge Program 69

Example 12 -- Sort

) L] T T

| Input | Output | Intermediate | User Options
| | | Storage | Modifications

1 1 L 4

r L] k] T

| Variable- | variable- | Four 2301 | E11 routine | Estimated
| length rec- | length | areas of | performs | data set
| ords on | recoxds | 60 tracks | initialization | size

| 2301 | on 2301 | each | for the El6 |

| | | | NMAX routine |

: L g 1 L - -

| 7/7EXAMP12 JOB B999, PROGRAMMER 01

| //STEPO EXEC SORT 02

| 7//SORT . SORTIN DD DSNAME=XFILE,VOLUME=SER=000230, 03
|77 UNIT=2301,DISP=0LD,DCB=(RECFN=V, ou
177 LRECL=120,BLKSIZE=124) 05

|//SORT.SORTWKO1 DD UNIT=2301,VOLUME=SER=230102,

\77

| //SORT.SORTWK02 DD UNIT=2301,VOLUME=SER=230197,

|77

| //SORT.SORTWK03 DD UNIT=2301,VOLUME=SER=000106,

|77

| //SORT .SORTWKO4 DD UNIT=2301,VOLUME=SER=000145,

|77

| 7/SORT . SORTOUT DD DSNAME=YFILE,VOLUME=SER=230198,

SPACE=(TRK, (60) , ,CONTIG)
SPACE=(TRK, (60),,CONTIG)
SPACE=(TRK, (60), ,CONTIG)

SPACE=(TRK, (60), ,CONTIG)

MMM MO X M XX
-
o

bee e e oo e e e . o S o S — — ————— ———— d— — ol o o oo . oo ettt seass i 2]

|77 UNIT=2301,DCB=(RECFN=V,LRECL=120, 15
V24 BLKSIZE=124),SPACE=(TRK, (170,10) ,RLSE), 16
177 DISP=(NEW,CATLG) ‘r7 17
| //SORT.USERLIB DD DSNAME=MYRTNS,DISP=CLD 18
| //SORT.SYSIN DD #* 19
| SORT FIELDS=(20,5,CH,R),SIZE=E25500 20
| MODS E11=(E11,500,USERLIB,S),E16=(E16, 554, USERLIB,N) 21
| RECORD TYPE=V,LENGTH=(120,,,60,80) 22
| END T 23
|7* 24
L

01-02 Standard JOB and EXEC statements.

03-05 Defines the input data set. It is named XFILE, resides on volume 000230

06-13

14-17

18
19

20-23

24

70

of a 2301, is known to the operating syster and is not to be deleted,
and consists of variable-length unblocked records.

Define four intermediate storage areas on 2301. Each area consists of
60 contiguous tracks.

Defines the output data set. It is named YFILE, and is to be placed on
volume 230198 of a 2301. It will contain records of the same format as
the input data set. One hundred seventy tracks are requested for the
data set. If they are not sufficient to contain it, additional tracks
are requested in blocks of ten. The data set is being created in this
job step and is to be cataloged.

Defines the library that contains the E11 and E16 modification routines.
A data set follows.

Sort/merge control statements described in Example 6 at the end of the
topic "Defining the Sort or Merge."

Delimiter statement.

Initiating Sort/Merge

‘There are two ways to initiate a sorting operation:

e By including sort/merge control statements and job control language state-
ments in the input stream. You can use a cataloged procedure to supply some
of the job control language staterents.

e By using ATTACH, LINK, or XCTL macro instructions issued by another program.

There is only one way to initiate a merging operation: by placing sort/merge
control statements and JCL statements in the input stream. As with a sort, a
cataloged procedure can be used to supply some of the JCL.

USING THE SYSTEM INPUT STREAM

When sort/merge program execution is initiated by control statements in the input
stream, it is treated as an ordinary task being executed under operating system
control. You must provide a JOB statement, an EXEC statement and several DD
statements to communicate with the operating system and the sort/merge program.

The job that initiates sort/merge requires a JOB statement. Each job step
within that job requires an EXEC statement. (Cther job steps may precede and
follow the sort/merge job step.) The EXEC statement that introduces the sort/
merge job step can initiate execution either directly or through a cataloged pro-
cedure. DD statements are required to define data sets used by the sort/merge
program, the system, and, if necessary, the linkage editor.

Cataloged Procedure SORT

The SORT cataloged procedure is designed to be used in sorting and merging appli-
cations that have modification routines that require link editing. You can use
this procedure for all sort/merge applications, but it is inefficient for those
that do not have modification routines that require link editing, because it
causes unnecessary linkage editor data sets to be allocated.

The SORT cataloged procedure is:

//SORT EXEC PGM=IERRCO00,REGION=98K 01
//SYSOUT DD SYSOUT=A 02
//SYSPRINT DD DUMMY 03
//SYSLMOD DD UNIT=SYSDA,SPACE=(3600, (20,20,1)) o4
//SYSLIN DD UNIT=SYSDA,SPACE=(80,(10,10)) 05
//SORTLIB DD DSNAME=SYS1.SORTILIB, DISP=SHR 06
//SYSUT1 DD UNIT=(SYSDA,SEP=(SORTLIB,SYSLMOD,SYSLIN)), X 07
/77 SPACE=(1000, (60,20)) 08
01 The stepname of the procedure is SORT. This EXEC statement initiates

the sort/merge program, which is named IERRCO00. A 98K region, large
enough to contain the largest linkage editor, is requested.

02 This DD statement defines an output data set for system use (messages).
It is directed to system output class A.

03 SYSPRINT is defined as a dummy data set because linkage editor diagnos-
tic output is not required.

o4 This DD statement defines a data set for linkage editor output. Any
system direct access device is acceptable for the output. Space for 20
records that have an average length of 3,600 bytes is requested; this is
the primary allocation. Space for 20 more records is requested if the
primary space allocation is not sufficient; this is the secondary allo-
cation, which is requested each time space is exhausted. The last value
is space for a directory, which is required because SYSLMOD is a new
partitioned data set.

Section 2: How to Use the Sort/Merge Program

71

05 The SYSLIN data set is used by the sort/merge program to describe pre-
edited input to the linkage editor. It is created on any system direct
access device, and it has space for 10 records with an average leigth of
80 bytes. If the primary space allocation is exhausted, additional
space is requested in blocks large enough to contain 10 records. No
directory space is necessary.

06 The SORTLIB DD statement defines the data set that contains the sort/
merge program modules. It has the qualified name SYS1.SORTLIB, and it
is cataloged.

07-08 The SYSUT1 DD statement defines a work data set for the linkage editor.

Cataloged Procedure SORTD

The SORTD cataloged procedure is designed for sorting and merging applications
that have no modification routines, or have modification routines that do not
require link editing. It cannot be used for applications having modification
routines that need link editing.

The SORTD cataloged procedure is:

//SORT EXEC PGM=IERRCO00,REGION=26K 01

//SY¥YSOouT DD SYSOUT=A 02

//SORTLIB DD DSNAME=SYS1.SORTLIB, DISP=SHR 03

01 The stepname of the SORTD procedure is SORT. A 26K region is the small-
est in which the program can operate.

02 Sort output is directed to system ocutput class A.

03 This DD statement defines the data set containing sort/merge program
modules.

USING ATTACH, LINK OR XCTL

You can use ATTACH, LINK, or XCTL macro instructions in another program to initi-
ate operation of a sorting application (but not a merging application). (For a
full description of ATTACH, LINK, and XCTL, see the publication IBM System/360
Operating System: Supervisor and Data Management Macro Instructions, Form
C28-6647.)

There are four differences between initiating sort in the input stream and
initiating it by a macro instruction:

1. Sort DD statements must be placed in the input stream with the job step that
issues the macro instruction.

2. Information normally contained on sort/merge control statements must be
passed to the sort/merge program in a parameter list.

3. Only two sort/merge program exits for modification routines (E15 and E35,
see "Section 3: Program Modification") can be used when the sort is
initiated by a macro instruction.

4. If ATTACH is used, checkpoints cannot be taken.

Supplying the Needed DD Statements

When you ATTACH, LINK, or XCTL to the sort/merge program, you must supply the
following DD statements in the input stream with the job step that issues the
macro instruction:

//SORTLIB DD DSNAME=SYS1l.SORTLIB,DISP=SHR

to define the data set that contains sort/merge program modules.

72

S

//SORTIN DD with appropriate parameters

(See the examples at the end of "Job Control Language for Sorts/Merge") to
define the data set(s) to be sorted.

//SORTWKO1 DD with appropriate parameters

//SORTWK32 DD with appropriate parameters

to define the intermediate storage data sets required by the sort.
//SYSOUT DD SYSOUT=A

to define an output data set (messages) for system use.
//SORTOUT DD with appropriate parameters

to define ‘the sort/merge output data set.
Note: 1If you activate sort/merge exit E15, the SORTIN DD statement is not neces-
sary because your routine will supply all input for the sort. If you activate
exit E35, the SORTOUT DD statement is not necessary because your routine will
handle output from the sort. You may need DD statements to describe your sort

input and to set up a data set for your output, but they need not be called SOR-
TIN or SORTOUT.

Passing Parameters to the Sort

The parameters you pass to sort/merge consist of two control statement images --
SORT and RECORD —- in main storage, and the entry point addresses of your modifi-
cation routines (E15 and E35). These are the only modification routines per-
mitted when sort/merge is initiated by ATTACH, LINK, and XCTL, and they are
optional. You need not use any modification routines.

Your routine must construct the following parameter list and place a pointer
to it in general register 1 before issuing the contrcl-passing macro instruction:

i X;SO' 1 Pointer to list of addresses and options j
The format of the address list is: 4‘(//’f
i Unused l Number of bytes in the following list]
istarting address of the SORT statement j
iEnding address of the SORT statement i
istarting address of the RECORD statement j
iEnding address of the RECORD statement]
iAddress of the E15 routine or zeros if no routine is provided 1
iAddress of the E35 routine or zeros if no routine is provided
i0ptiona1 characters for ddnames J
i X'00" I Optional main storage value]
{OPtional sequence distribution techniques

X'FF' i Unused I Message option J

Section 2: How to Use the Sort/Merge Program 73

The address list is variable in length. The first halfword shown in the above
illustration is not considered part of the list. The next halfword, which is
pointed to by the parameter list pointer, contains the number of bytes in the
parameter list excluding the two bytes occupied by the number itself. The list
must contain at least 24 bytes because none of the addresses can be omitted.
(The E15 and E35 routine addresses are zeros if the routines are not used.) The
list can be as long as 40 bytes if all the options are included.

The first address in the address list must begin on a fullword boundary. Each
address is contained in the low order three bytes of a fullword.

The following rules apply to the SORT and RECORD statement images whose start-
ing and ending addresses appear in the address list:

* The first and last bytes of each statement image must contain a blank, and a
blank (one only) must follow SORT and RECORD. .No other blanks are allowed.

* The contents and formats of the SORT and RECORD statements are the same as
those described in Section 2 under "Defining the Sort or Merge" except that
continuation characters are not allowed. In other words, the statement
images are not set up in card image format. Each statement image can be up
to 1,100 bytes long.

® No comments are permitted.

The six addresses (or four addresses and two words of zeros) must appear in the
order shown in the list. The options following the addresses can appear in any
order and any of them can be omitted. For example, to specify only the optional
main storage value, construct the list as follows:

Unused Count

et e

|Address or zeros
L

]
|Address or zeros

T
X'00° | Optional Main Storage Value
1

(o e vy

e el LT S S S——

To specify only the balanced sequence distribution technique,
construct:

Unused Count

e ——
T

Address

Address

Address

P e ey e e e o9

Address

Address or zeros

P

Address or zeros

[g s

k] k)
B [A I L I N
L L

el e T S S W S—

~
=

OPTIONAL CHARACTERS FOR DDNAMES: You must select this option if you are opera-
ting in a multiprogramming environment and your task initiates two or more sort
applications via ATTACH, LINK, or XCTL. The four characters you place in this
word of the address list will replace the characters "SORT" in the DD names of
the standard DD statements that define input, intermediate storage, and output.
For the four characters, you can use any alphameric characters and the special
characters §, #, and @, but the first must be alphaketic. If it is not, the
characters are ignored. For example, if you-use the characters ABC# as replace-
ment characters, the statements SORTIN, SORTWKO1 - SORTWK32, and SORTOUT from the
input stream will be converted internally to ABCH#IN, ABCH#WKO1 - ABC#WK32, and
ABC#O0OUT.

Caution: Do not use characters that conflict with other ddnames; do not use the
characters BALN, OSCL, POLY, CRCX, or DIAG.

OPTIONAL MAIN STORAGE VALUE: This parameter serves the same purpose as the CORE
parameter in the EXEC statement PARM field. With it, you can specify the amount
of main storage sort/merge can use for this application. The value you specify
temporarily overrides the main storage assigned to the sort at system generation.
The value must be a binary number and must appear right justified in the last
three bytes of the field. As shown in the address list format, the high-order
byte must contain zeros. The new value must not be less than 12,000, the minimum
number of bytes needed for sort/merge operation. If it is, the number 12,000 is
chosen by default. Refer to the topic "Altering the Main Storage Allocation" in
Section 4 for further information.

OPTIONAL SEQUENCE DISTRIBUTION TECHNIQUES: This parameter takes the place of
another PARM field option. With it you can force the sort/merge program to
choose the kalanced, oscillating, or polyphase technique for tape intermediate
storage or the balanced or crisscross technique for disk. The four valid entries
for this parameter are BRALN, OSCL, POLY, and CRCX. Refer to the topic "Sequence
Distribution Techniques"™ in Section 1 for further information.

This parameter may be ignored under the following conditions:

Tape Sorting

e Only three intermediate storage tape drives are assigned. With only three
drives, the polyphase technique is always used.

e No input data set size, exact or estimated, is specified on the SORT state-
ment. When the sort/merge program is not given an input data set size, it
always uses the balanced technique if more than three work tapes are
available.

e The tape drive containing the input data set is alsc specified as an interme-

diate storage unit. In this case, the oscillating technique cannot be used,
so the sort/merge program chooses either the balanced or polyphase technique.

Disk sorting

e Technique forcing can occur only on a 2314 facility. All direct access sort-
ing on 2311 disks and 2301 drums uses the balanced technique.

e Whenever less than six work areas are available, only the balanced technique
can be used on the 2314.

e Whenever more than six work areas are available, only the crisscross techni-
que can be used on the 2314.

Section 2: How to Use the Sort/Merge Program

75

MESSAGE OPTION: This parameter takes the place of the third EXEC statement PARM
field option, MSG. The parameter temporarily overrides the message option
selected at system generation.

The high-order byte of this parameter must be X'FF'. The next byte is unused.
The last two bytes must contain one of the following codes:

NO -— no messages printed

CC ——- critical messages only, printed on the system console
CP -- critical messages only, printed on the printer

AC -- all messages, printed on the system console

AP -- all messages, printed on the printer

Considerations When Using XCTL

When you initiate sort/merge via XCTL, you must give special consideration to the
area where the parameter list, address list, and optional parameters, and modifi-
cation routines (if you use them) are stored. This information must not reside
in the module that issues the XCTL because the module is frequently overlaid by
the sort/merge program.

There are two ways to overcome this problem. First, the control information
can reside in a task that attaches the module that issues the XCTL. Second, the
module issuing the XCTL can first issue a GETMAIN macro instruction and place the
control information in the main storage area it obtains. This area is not over-
laid when the XCTL is issued. The address of the control information in the area
must be passed to the sort/merge program in general register 1.

The following text contains two examples. The first illustrates passing pa-
rameters to the sort. The second is an assembler language coding example that
shows how to set up the parameter list, address list, and optional fields.

Example 1

Figure 12 shows how the parameter list, address list, and optional fields might
appear in main storage.

General register 1 contains a pointer to the parameter list, which is at loca-
tion 1000. The parameter list points to the address list which begins at loca-
tion 1006. The first halfword of the address list contains, right adjusted, in
hexadecimal, the number of bytes in the list (40 decimal).

The first two fullwords in the address list point to the beginning (location
1036) and end (location 105A) of the SORT control statement. The next two full- ,
words point to the beginning (location 105B) and end (location 1074) of the REC-
ORD statement.

The fourth and fifth fullwords in the list contain the entry point addresses -
of modification routines for exit E15 (2000) and exit E35 (3000).

The next fullword in the 1list contains four characters to replace the letters
"SORT" in the DD names of standard DD statements.

The next three fullwords in the list specify a wain storage value for this
application, a sequence distribution technique, and a message option.

The control statement images must be represented in EBCDIC. The symbol b in
the figure stands for a blank character.

76

General Register 1 Parameter List Address List

Contents Location Contents Location Contents

r 1

| 1000 } 1000 Byte 1

e r T -7
[X"80" 001006 1004]00]00|00[28|
L

1
J U I N N—— |
1008[00]00[10]36
1036 105A p—t—t—4—A1
100C|00]00|10|5A|
DSORT FIELDS=(10,15,CH,A),SIZE=47806b p——f———4—1
1010]00]00{10{5B|

-4+

)

I

|

|

|

|

|

|

]

|

|

|

|

i

i 1058 1074 1014]00[00{10|74]
| } F—t—t—4—1
| bRECORD LENGTH=100,TYPE=Fb 1018|00]00|20]00]
|
|
|
|
|
|
|
|
|
|
|
|
L
F

101C{00[0030|00]
b-—t-—-—+--1
1020| A| B| c| #]

—f-—f-—4-—{

1024]00]00[65]90]
b-—f-—+-—+-—1
1028] o] s| c¢| L]

—f=—f-—t-—1

102C|FF|00| A| C|
Ll _ 1 _i__1J

e e s s s e — — — — ——————— — — ——— — —— —— —— ——]

e Figure 12. Passing Parameters to the Sort

Section 2: How to Use the Sort/Merge Program 77

Example 2

The following example shows, in assembler language coding, how to set up the pa-
rameters and card images in Example 1, and how to pass control to the sort/merge
program.

LA 1,PARLST
ATTACH EP=SORT,MF=(E, (1))

cNOP 0,8
PARLST DC X'80°"
DC AL3 (ADLST)
DC X'0000°"
ADLST DC X'0020°"
DC A (SORTCD)
DC A (STCDED)
DC A (RCDCD)
DC A (RDCDED)
DC A (MOD1)
DC A (MOD2)
DC C'ABCH'
DC X*0000"
DC X'6590°"
DC C'0scCL’
DC X'FF00°*
DC C'AC?'
SORTCD DC C' SORT FIELDS=(10,15,CH,A),"
DC C'SIZE=4780"
STCDED DC cY *
RCDCD DC C' RECORD LENGTH=100,TYPE=F"*
RDCDED DC c' !
CNOP 0,8

USING *,15
MOD1 routine for exit E15

CNOP 0,8
USING *,15
MOD2 routine for exit E35

Further Considerations When Using ATTACH, LINK, or XCTL

If you provide a modification routine for exit E15, sort/merge ignores the SCRTIN
data set. Your E15 routine must pass all input records to the sort/merge pro-
gram. This means that your routine can only issue a return code of 12 (insert
record) until the input data set is completed and then a return code of 8 (do not
return).

Similarly, sort/merge ignores the SORTOUT data set if you provide a modifica-
tion routine for exit E35. Your routine is responsible for disposing of all out-
put records. Your routine must issue a return code of 4 (delete record) for each
record in the output data set. When sort/merge has deleted all the recoxds, your
routine issues RC = 8 (do not return).

When sort/merge completes execution, it passes control back to the routine
that invoked it or to the operating system.

78

S

Section 3: Program Modification

User-written routines can be used during a sort/merge program execution to per-
form a variety of functions, such as deleting, inserting, altering, and summariz-
ing records.

Ccontrol is passed to your routines at predesignated places in the executable
code of the sort/merge program called sort/merge program exits. Because these
exits are located in particular program phases (and in one case, in a particular

module), a general understanding of how the sort/merge program operates is neces-
sary to understand sort/merge program exits.

Program Description

The sort/merge program is a segmented program; that is, it is composed of parts
that can operate independently. Generally, there are two levels of segmentation:

1. Phases -- large program components that accomplish a certain task.
2. Modules -- the independent routines of which phases are composed.

The sort/merge program is composed of five phases. BAll five phases are used
for sorting applications, but only the first two and the last phases of the pro-

gram are used for merging applications. The first two phases -- the definition
and optimization phases -- are strictly initialization phases. Each of the
remaining three phases -- the sort, intermediate merge, and final merge -- is

divided into two components:
1. An assignment component that initializes for the operation of the phase.
2. A running component that performs the actual sorting or merging.

Figure 13 is a phase-level flowchart of the program. Each phase is explained
in the following text.

DEFINITICN PHASE

The definition phase reads and interprets sort/merge control statements and
decides which phases, and which modules of each phase, should be used. This
phase also decides which of your routines, if any, must be link edited. This
phase has no exits for passing control to your routines.

Section 3: Program Modification

79

Definition
Phase

Routines
to be Link
Edited

Yes

Linkage
Editor

j)

7

Optimization
Phase

Sort
Phase

Y

Intermediate
Merge
Phase

) -
>

Y

Final
Merge
Phase

Figure 13. Phase-level Flowchart

OPTIMIZATION PHASE

The optimization phase, using information obtained from the operating system and
from DD statements, determines the optimum method of using the CPU and 1I/0 con-
figuration available.

comparisons.
may be generated to make record comparisons.

This phase also generates special routines, if necessary, to perform record

One of two routines —-- the equals module or the extract module --

(Neither routine is used when sort-

ing or merging is based on a single control field containing character data or
binary data beginning and ending on a byte boundary.) If one of these routines
is used, it remains in main storage throughout execution of the program.

80

Equals Module

The equals module is used when there are from two to twelve control fields and
all control fields contain character data or binary data beginning and ending on
a byte boundary. It is executed to resolve the collating of records when an
equal comparison arises between two major control fields. This is done by com-
paring successive minor control fields until an unequal compare is made, thus
determining the proper order of the two records. If all control fields are
equal, the records are taken in the order which requires the least internal pro-
cessing time.

Extract Module

The function of the extract module is to extract and group all of the control
fields into one field so that a single compare instruction can be executed to
collate the record.

The extract module is loaded for one of two reasons:

1. If more than one control field is used and the equals module cannot be used
to resolve collating.

2. 1If specified by the user in either the SORT or MERGE control statement.
(User specification is accomplished by taking the E option for the s parame-
ters of the FIELDS operand. See the topic "Defining the Sort or Merge" in
Section 2 for further information.)

When the extract module is used, it is executed each time a logical record is
processed. This is done to avoid carrying the extracted information with the
records, which would increase I/0 time and, therefore, total sort or merge time.

SORT PHASE

The job of the sort phase is to order the input data set into sequences and dis-
tribute these sequences onto intermediate storage data sets. The method of dis-
| tribution is determined by the sequence distribution technique being used.

If tape is being used as intermediate storage, the sequences may be put out in
both ascending and descending order. This enables the intermediate merge phase,
using the read-backward feature, to merge the sequences without rewinding tapes.

If direct access intermediate storage is used, the sequences are distributed
among the areas assigned to the program so that they may be merged in a minimum
number of passes.

This phase has a number of exits at which control can be passed to your
routines.

INTERMEDIATE MERGE PHASE

The intermediate merge phase is loaded and executed following completion of the
sort phase. It performs successive merges of the strings produced by the sort
phase. The merges are carried out from intermediate storage device to intermedi-
ate storage device, each successive merge decreasing the number of strings and
increasing the average string length. When one more merge is required to create
one long string (the output data set), control is given to the final merge phase.
| There are several exits in this phase at which your routines can receive control.

Section 3: Program Modification

FINAL MERGE PHASE
The final merge phase has two uses:

1. It makes the final merge pass of a sortlng application, thus creating the
output data set.

2. It merges the input data sets for a merging application to create the output
data set.

Output from this phase can be on any output device supported by QSAM. After
the execution of this phase, the sort system control component returns control to
the operating system via the RETURN macro instruction. Your routines can receive
control at a number of exits in this phase.

General Information
There are two types of exits available with the sort/merge program.

1. Assignment component exits, one each for the sort, 1ntermed1ate merge, and
final merge phases.

2. Running component exits, a number of which are associated with the running
cormponent of each program phase.

You can use assignment component exits to initialize your routines in each
phase or to open data sets needed by your routines. The sort/merge assignment
components are overlaid and used as buffer areas by the running components. Your
routines at assignment component exits are also overlaid unless you link edit
them together with the other routines in the phase.

You can use running component exits for a variety of purposes including the
deletion, summarization, insertion, or any other alteration of the records coming
into or out of the phase. You can also use running component exit routines to
correct some of the errors that may occur during sort/merge execution, including
1/0 errors and exceeding Nmax. These exits also give you an opportunity to pro-
vide a routine that will close any data sets used by your other routines. You
can use a running component extract module exit (E61) to alter control fields
before the program collates them. This is the exit you would use to normalize
floating-point control fields.

Figure 14 is a summary of the sort/merge prograr exits and their uses. The
first digit of the exit number represents the phase in which the exit is located
-- 1 for the sort phase, 2 for the intermediate merge phase, and 3 for the final
merge phase. The second digit represents the type of function your routine can
perform at the exit.

EFFICIENCY CONSIDERATIONS

When you consider using sort/merge program exits, you should weigh the following
factors:

e Your modification routines occupy main storage that would otherwise be avail-
able to the sort/merge program. Because its main storage is restricted, the
program may need to execute extra intermediate merge phase passes. This, of
course, increases sorting time.

e The execution of your routines adds time to the overall sort/merge program
execution time. Later, in the descriptions of exits, you will note that most
of the exits give your routine(s) control once for each record until you pass
a "do not return" return code to the program. You should design your modifi-
cation routines with this in mind.

82

To use sort/merge program exits, you must associate your routines with the
appropriate exits using the MODS control statement. (Refer to the topic "Defin-
ing the Sort or Merge" in Section 2.)

Note: If you use the 18K linkage editor with the minimum amount of sort/merge
main storage, your routines are limited to 10 external references.

T
Possible Sort | Intermediate Merge Final Merge Extract

Use for
Exit

—
—

—_——t—
[t S

E61

=
iy
[

¥ k]] lr L L T 1 T i L]]
E15|E16|E17|E18|E19|E21|E25|E27|E28|E29|E31|E35|E37|E38 |E39
L d 1 L i B |

1

v L]
|

—

X X

>

Assignment

Nmax Error

e e o o

Logical
Record
Change

e

Control
Field
Change

L)

Opening
Data Sets

Closing
Data Sets

Read Error
Routine

B et e e it o L ST S ——

Write Exrror| X X

Routine |
i

[o S G . M G G S P i, S B it S . S G . oo S o S S S G ——

bl e o i et S e E e s a
ekl s mntt —— a S o]
e e e o e o o e s e e e o s e . . . e, e e i e

o o e e e o o e e e et e e e o e e e e . o e i e o]
e e e o e e . e et e s e . s, e . s e

bt L i Sl a

o e e s e . o e e e s . e e

e e o e e e o e e e s . . e e e . . . e . e e e]
e e s o s s . . e s e . e e . e . G . st s s

abt e R Rl n el m el al e N SIS Su—— .
it a s s T T T S—

e e s e e s s e . e e . s e S . . . s s s s

P e s e e e e e s s e o e s e o v o s

o e e o e s o e e i e e e e e s e e e i s e e o]
e o e e e e i e e . . e i e s e i i o e e

e e e et o e e o e . S . —

L TS PUEE [ISP SN S SN Sy S——

Figure 14. Summary of Functions Permitted at Sort/Merge Program Exits

BYPASSING THE LINKAGE EDITOR

To save execution time, you should design your routines so that they do not
require link editing each' time they are used in a sort/merge application. To
avoid use of the linkage editor at sort/merge execution time, your routines must
meet the following requirements:

s Each routine must be a load module cn a partitioned data set (library). Its
member name must be the same as its exit numbker. e.g., E16. The value s on
the MODS statement that defines the routine must be the name of the DD state-
ment that defines the library. e.g.,

MODS E16=(E16,500,MYLIB,N)
//VMYLIB DD DSNAME=MYRTN, etc.

¢ Each routine must have only one entry point which is the module name.
s The routines cannot have external references.
e All routines must be on the same library or must be defined as a concatenated

data set with one ddname.

You should code the parameter N on the MODS statement for each routine that
meets the above requirements. This indicates that the routine was previously
link edited and does not require further link editing.

Section 3: Program Modification

83

If you use routines at assignment exits (E11, E21, and E31) that do not meet
the requirements for bypassing the linkage editor, you can still save execution
time by designing them for separate link editing. To be eligible for separate
1link editing, your assignment component routines must meet the following
requirements: '

e Each routine must be separate.
e The routines cannot contain external references.

e The routines can have several entry points, but one entry point must be the
same as the exit number e.g., Ell. '

e The routine must be designed so that it can be overlaid after assignment
time.

To indicate that the routine is eligible for separate link editing, code the
parameter S for that routine on the MODS statement. If your routine opens data
sets or communicates with running component routines, it will contain external
references and therefore cannot be link edited separately.

When your routine does not meet the requirements for bypassing the linkage
editor or for separate link editing, do not code a fourth parameter for that rou-
tine on the MODS statement. The routine is then link edited together with all
other routines in its phase which do not meet the requirements. In any phase,
you can mix routines that do not require additional link editing, routines that
can be link edited separately, and routines that must be link edited together.

OPERATING CONSIDERATIONS

Each of your routines must be assembled or compiled as a separate program and
placed in either a partitioned data set (library) or in the system input stream.
The sort/merge general assignment phase includes the names and locations of your
routines in the list of modules to be executed during each program phase. Your
routines are loaded and executed with their associated program phase.

None of your routines can appear more than once in a program phase, but the
same routine can appear in several phases. For example, you can use the same
read error routine in all three phases, but not twice in any one phase. If a
routine is to be used more than once and the routines are on SYSIN, you must
supply a copy of the routine for each use.

only one load module is allowed at each sort/merge program exit. If you need
more than one routine at an exit, the routines must be assembled, compiled, or
link edited as one load module.

All your routines in a phase that require link editing can be placed in one
partitioned data set member. The member must have an entry point for each of the
routines you use. When the routines are arranged in one member, their individual
lengths specified on a MODS statement are not important, but the sum of the
lengths must be the total length of the module. All but one length can be speci-
fied as zero, with the total member length specified for the remaining routine.

ROUTINES IN THE SYSTEM INPUT STREAM

The routines that you place in the system input stream are copied into the SORT-
MODS data set; they then become input to the linkage editor. Under the MVT con-
figuration, the entire contents of SYSIN, including control statements, is first
moved to a system direct access data set. Sort/merge strips away the sort con-
trol cards and then copies your routines on SORTMODS.

When data follows your routines, it is also written on the system data set.

When one of your routines opens SYSIN to read the data, it will start reading
from the beginning of the SYSIN data set.

84

LINKAGE CONSIDERATIONS

Your routine must save and restore all general registers it uses at the modifica-
tion exit. The general registers used by the sort/mwerge program for linkage and
communication of parameters follow operating system conventions. The registers
used are: .

s General register 1 -- used to pass the address of a parameter list to the
called routine.

® General register 13 -- contains the address of an area, set aside by the
sort/merge program, in which your routine may save the contents of any gener-
al registers it needs for operation.

* General register 14 -- This register contains the address of the sort/merge
program return point.

® General register 15 -- contains the address of your routine. your routine
can use it as a base register. General register 15 is also used as a return-
code register whereby your routine communicates information to the sort/merge
program.

The sort/merge program uses a CALL macro instruction expansion to enter your
routines. You can return control to the sort/merge program with a RETURN macro
instruction. You can also use the RETURN macro instruction to set return codes
when multiple actions are available at an exit. You can use the SAVE macro
instruction to save all general registers that the routine uses. TIf you save
registers, you must also restore them. You can do this with the RETURN macro
instruction.

All of your routines must contain an entry point defined by an ENTRY or CSECT
statement. The name of the entry point must be the number of the associated
sort/merge program exit.

Linkage Examples

The CALL macro instruction used by the sort/merge program to link to your rou-
tines is written as follows:

CALL El1
This macro instruction is expanded to form assembler language instructions and,
when executed, places the return address in general register 14 and your rou-

tine's entry point address in general register 15. The sort/merge program has
already placed the register save area address in general register 13.

Your routine for the sort phase assignment component exit could incorporate
the following instructions:

ENTRY El1

Ell SAVE (5,9)

RETURN (5,9)

This coding saves and restores the contents of general registers 5 through 9.
The macro instructions are expanded into the following assembler language code:

Section 3: Program Modification

ENTRY El1l

. N
E11l STM 5,9,40(13)

LM 5,9,40(13)

BR 14

If multiple actions are available at a sort/merge program exit, your routine
sets a return code in general register 15 to inform the sort/merge program of the
action it is to take. The following macro instruction could be used to return to
the sort/merge program with a return code of 12 in general register 15:

RETURN RC=12
(A full explanation of linkage conventions and the macroinstructions discussed

in this section can be found in the publication IBM System/360 Operating System:
Supervisor and Data Management Macro Instructions, Form Cc28-66U7.)

Assignment Component Exits (E11, E21, E31)

PHASE IN WHICH USED:

E11 -- Sort phase
E21 -- Intermediate merge phase
E31 -- Final merge phase

POSSIBLE USES OF ROUTINES: You might use routines at these exits to open data
sets needed by your other routines in the associated phases, or to initialize

your other routines. ~
RETURN CODES: None.

LINKAGE CONVENTIONS:

r T - 1

|code Sorts/Merge Uses to |Code Your Routine Uses to Return |

|Enter Your Routine |to Sort/Merge]

| : !

| | !

| CALL E11 | ENTRY E11 |

| | . |

| | . |

| |E11 SAVE (5,92 |

| | . |

| | - |

| ! RETURN (5,9)1% |

b . 1

|1This coding saves and restores the contents of registers 5 through 9. You would save |

| and restore whatever registers you use. |

L J

FURTHER CONSIDERATIONS: These are the only three routines you can design for separate -
iink editing. Refer to the topic "Bypassing the Linkage Editor" earlier in this section.
Running Component Exits

Each sort/merge program phase has a number of running component exits associated with it.

Many of these exits perform the same function in each of the program's three phases.

They are explained in the following text according to exit function. N

86

RECORD CHANGE EXITS (E15, E25, E35)
The record change exits can be used to insert, delete, alter, or summarize records.
Exit E15

PHASE IN WHICH USED: Sort phase before any records are sorted.

POSSIBLE USES OF ROUTINE: Add records to the input data set, create the entire input
data set, delete records from the input data set, change records in the input data
set (except control fields). Use exit E61 foxr control field change.

INFORMATION SUPPLIED TO YOUR ROUTINE BY SORT/MERGE: Your routine at exit E15 is
executed each time a new record is brought into the sort phase. Sort/merge places
the address of a parameter list in general register 1. The parameter list contains
the address of the new record. The parameter list starts on a fullword boundary and
is one fullword long. The high order byte of the word is not used; it is represented
by xx in the figure below. The format of the parameter list is:

T
XX | Address of the new record
1

[—

e e

When sort/merge reaches the end of the input data set, it passes an address of zero
in the parameter list. If there are no records in the input data set, sort/merge
passes a zero address the first time it uses exit E15.

RETURN CODES: Your routine must pass one of the following return codes to the sort
merge program informing it what to do with the record you have been examining or
changing:

0 -- Alter or no action
4 -- Delete record
8 -- Do not return

12 -- Insert record

0 - No Action: If you want sort/merge to retain the record as is, place the address
of the record in general register 1 and return to sort/merge with a zero return code.

0 - Alter Record: If you want to change the record before passing it back to sort/
merge, your routine must move the record into a work area, perform whatever modifica-
tion you desire, place the address of the modified record in general register 1, and
return to sort/merge with a zero return code. If your routine changes record size,
you must communicate that fact to the program on a RECORD statement. (See "Defining
the Sort or Merge" in Section 2 and the publication IBM System/360 Operating System:
Supervisor and Data Management Services for further information about the length
indicator and the Record Descriptor Word.)

4 - Delete Record: If you want sort/merge to delete the record from the input data
set, return with a return code of 4. You need not place the address of the record in
general register 1.

8 —— Do Not Return: Sort/merge keeps returning to your routine until you pass a
return code of 8. After that, the exit is closed and not used again during the sort/
merge application. You need not place an address in general register 1 when you
return with RC = 8. Unless you are inserting records after end-of-data set, you must
pass a return code of 8 when sort/merge indicates end-of-data set by passing your
routine a zero address in the parameter list.

12 -— Insert Record: If you want sort/merge to add a record to the input data set,
before the record whose address was just passed to your routine, place the address of
the record to be added in general register 1 and return to sort/merge with a return
code of 12. Sort/merge then returns to your routine with the same record address as
before so that your routine can insert more records at that point or alter the cur-
rent record. You can make insertions after the last record in the input data set
(after sort places a zero address in the parameter list). Sort/merge keeps returning
to your routine until you pass a return code of 8.

Section 3: Program Modification

87

LINKAGE CONVENTIONS: Linkage conventions for exit E15 are shown in the following
table:

] 1) 1
|Code Sort/Merge Uses to |code Your Routine Uses to |
|Enter Your Routine : |Return to Sort/Merge |
1 4 J
T] 1
La 1,param	ENTRY E15
CALL E15	.
.	-
.	E15 SAVE 5,9
param DC A(radrs)	.
	.
	LA 1,nwrec
i RETURN (5,9),	
	RC=x I
t i 4	
radrs refers to the record passed by the sort	
nwrec refers to the record returned to the sort	
x is the return code '	
1 J	
RESTRICTIONS: If you ATTACH, LINK, or XCTL to the sort/merge program, and use	
exit E15, the sort/merge program ignores the SORTIN data set. Your E15 routine	
must pass all input records to the program by placing their addresses one by one	
into general register 1 and returning to sort/merge with RC = 12. When sort/merge	
returns to your routine after you have passed the last record, return to sort with	
RC = 8 indicating "do not return." Since exit E15 is associated with the sort	
phase, it cannot be used during a merge-only operation.	
Exit E25	
PHASE IN WHICH USED: Intermediate merge phase, after the records have been	
merged.	
POSSIBLE USES OF ROUTINE: Change (except control fields) or delete records leav-	
ing the intermediate merge phase.	
INFORMATION SUPPLIED TO YOUR ROUTINE BY SORT/MERGE: Your E25 routine is executed	
each time sort/merge prepares to place a record (except the first record in each	
sequence) in an intermediate merge output sequence. Sort/merge passes two record	
addresses to your routine. These are:	
e The address of the record leaving the merge, which would normally follow the	
record in the output area.	
e The address of a record in the output area.	
In general register 1, sort/merge places the address of a parameter list that con-	
tains these two record addresses. The parameter list starts on a full word boun-	
dary and is two fullwords long. The high order bytes of both words are not used	
(contain zeros). The format of the parameter list is:	
) L) 1	
XX	Address of Record Leaving Merge
i . 4
T 1
XX | Address of Record in Output Area |
L Jd

RETURN CODES: Your routine must pass one of the following return codes to the
sort/merge program informing it what to do with the record leaving the merge:

0 —— Alter or no action
4 -- Delete record or summarize and delete

88

N

N’

S

0 - No Action: If you want sort/merge to retain the record as is in the interme-
diate merge sequence, load the address of the record leaving the merge into gener-
al register 1 and return to sort/merge with a zero return code. The next time
sort/merge transfers control to your routine, the record whose address you just
passed will be the record in the output area.

0 - Alter Record: If you want to change the record (except its control field)
before passing it back to sort/merge, move the record to a work area, make the
change, place the address of the modified record in general register 1, and return
to sort/merge with a zero return code.

4L - Delete Record: If you want to delete the record leaving the merge, return to
sort/merge with a return code of 4. You need not place an address in register 1.

4 - Summarize and Delete: You can summarize records by changing the record in the
output area and then deleting the record leaving the merge. Sort/merge then
returns to your routine with a new record (leaving the same record in the output
area so that you can summarize further.) If you want to perform summarization
without deletion, you should do it at exit E35 rather the E25 because it is more
efficient. The sort/merge program does not test for equal control fields before
taking exit E25. If you want to summarize records with equal control fields, you
must test the fields.

LINKAGE CONVENTIONS: Linkage conventions for exit E25 are shown in the following

] T 1
|Code Sort/Merge Uses to Enter |Code Your Routine Uses to Return |
. | Your Routine |to Sort/Merge |
8 1 4
1} T 1
LA 1,param	ENTRY E25
CALL E25	.
.	-
.	E25 SAVE (5,9)
param DC A(xrcara)	.
DC A(otara)	.
	LA 1,modrc
	RETURN (5,9),
	RC=x
t L 1	
rcara refers to the record leaving the merge	
otara refers to the record in the output area	
modrc refers to the record returned to the merge	
x is the return code	
L J

RESTRICTIONS: You must not retain status information in the exit routine; you

must carry it in the records being merged. The entire intermediate merge phase
(including your E25 exit routine) is reloaded into main storage for each interme-
diate merge phase pass when the balanced tape or balanced direct access sequence
distribution techniques are used by the program. Your routine would not work
properly when sort/merge chooses either of the balanced techniques, if it depended
upon status information saved within it. Since exit E25 is associated with the
intermediate merge phase, it cannot be used during a merge-only operation.

Exit E35

PHASE IN WHICH USED: Final merge phase after the records have been merged.

POSSIBLE USES OF ROUTINE: Add records to, delete records from, or change records

in the output data set.

INFORMATION SUPPLIED TO YOUR ROUTINE BY SORT/MERGE: Your E35 exit routine is
executed each time sort/merge prepares to place a record (including the first
record) in the output area after the final merge. Sort/merge passes two record
addresses to your routine. These are:

Section 3: Program Modification 89

s The address of the record leaving the merge which would normally follow the
record in the output area. (This address is zero at end-of-data set.)

¢ The address of a record in the output area. (This address is zero the first
time your routine is entered because there is no record in the output area at
that time.)

Sort/merge also passes your routine a third parameter which is used to control
sequence checking. In general register 1, sbrt/merge places the address of a pa-
rameter list that contains the two record addresses and the sequence check switch.
The list is three full-words long and begins on a full-word boundary. The high
order bytes of the first two words are not used. The format of the parameter list
is:

I . T . 1
| XX | Address of Record Leaving Merge |
L 4 4
T L) h)
XX Address of Record in Output Area
P
t + T T 1
			Sequence Check
	00	00	Switch - 00
		jor o4	
L L L L J

The sort/merge program tests the sequence check switch before each record is
written on the output data set. If the word contains all zeros, sort/merge per-
forms a sequence check. If the low order byte of the word contains a 4, sort/
merge does not perform a sequence check. This switch is initially set to zero.
Your routine can set it and reset it as necessary. If your routine is altering
contrcl fields which would not collate properly in the output data set, it should
set the low order byte of the switch to 0100 to eliminate the sequence check for
the records whose control fields have been changed.

RETURN CODES: Your routine must pass one of the following return codes to sort/
merge informing it what to do with the record leaving the merge:

0 -- Alter or no action
4 —-—- Delete record
8 —— Do not return
12 -- Insert record
0 —— No Action: If you want the program to retain the record as is in the output

data set, load the address of the record leaving the merge into general register 1
and return to sort/merge with a zero return code.

0 -— Alter Record: If you want to change the record before having it placed in
the output data set, move the record to a work area, make the change, locad the
address of the modified record into general register 1, and return to sort/merge
with a zero return code. If you change record size, you must communicate that
fact to sort/merge on a RECORD statement.

4 —- Delete Record: Your routine can delete the record leaving the merge by
returning to sort/merge with a return code of 4. You need not place an address in
general register 1.

8 —-— Do Not Return: Sort/merge keeps returning to your routine until you pass a
return code of 8. After that, the exit is closed and not used again during the
sort/merge application. When you return with RC = 8, you need not place an
address in general register 1. Unless you are inserting records after end-of-data
set, you must pass RC = 8 when sort/werge indicates end-of-data set by passing
your routine zero as the address of the record leaving the merge.

12 —— Insert Record: If you want to add a record to the output data set before
the record leaving the merge, place the address of the new record in general reg-
ister 1 and return to sort/merge with a return code of 12. Sort/merge returns to
your routine with the same addresses as before so that you can make more inser-
tions at that point, or delete the record leaving the merge, etc. Sort/merge does
not perform a sequence check on records that you insert unless you delete the

920

record leaving the merge and insert a record to replace it. If your new record
will not collate properly, set the sequence check switch to 0100 to eliminate the
sequence check for that record.

Summarize Records: You can summarize records in the output data set by changing
the record in the output area and then, if you desire, deleting the record leaving
the merge. Sort/merge returms to your routine with the address of a new record
leaving the merge and leaves the same record in the output area, so that you can
summarize further. If you do not delete the record leaving the merge, that record
takes the place of the record in the output area and sort/merge returns with the
address of a new record leaving the merge. As with exit E25, sort/merge does not
check for equal control fields.

LINKAGE CONVENTIONS: Linkage conventions for exit E35 are shown in the following
table:

|xrcara refers to the record leaving the merge
|otara refers to the record in the output area
|nwrec refers to the record returned to the merge
|x is the return code

L

1] 1) 1
|Code Sort/Merge Uses to Enter |Code Your Routine Uses to Return |
|Your Routine |to Sort/Merge |
L L d
3 L] 1
| 1A 1,param | ENTRY E35 |
| CALL E35 |E35 SAVE (5,9 |
L L |
param DC A(rcara)	E35 MVI 11(1),
DC A(otara)	. X'oyr
DC A(0)	.
	LA 1,nwrec 1
	RETURN (5,9),
	RC=x
I L 4	
1] 1	

|

|

|

J

RESTRICTIONS: If you ATTACH, LINK, or XCTL to the sort/merge program and use exit
E35, the sort/merge program ignores the SORTOUT data set. Your E35 routine must
dispose of all the output records by writing them out on a data set (you must
supply a DD statement defining that data set,) and returning to sort/merge with RC
= 4. When sort/merge returns to your routine after you have dlsposed of the last
record, return to sort with RC = 8 indicating "do not return."

NMAX EXIT (E16)

PHASE IN WHICH USED: Sort phase.

POSSIBLE USES OF ROUTINE: You would use a routine at this exit to decide what to
do if sort exceeds its calculated estimate of the number of records it can handle
for a given amount of main storage and intermediate storage.

RETURN CODES: Your routine can choose among three actions, and must use one of
the following return codes to communicate its choice to sort/merge:

0 —— Sort current records only.
4 -— Try to sort additional records.
8 -- Terminate the program.
0 -- Sort Current Records Only: If you want sort/merge to continue with only that

part of the input data set it estimates it can handle, return with RC = 0. (Mes-
sage IERO5S54I contains the number of records that sort is continuing with. You can
sort the remainder of the data set on another run, using the SKIPREC operand on
the SORT statement to skip over the records already sorted. Then you can merge
the two sort outputs to complete the operation.)

Section 3: Program Modification

91

4 —— Try to Sort Additional Records: If you want sort/merge to continue with all

of the input data set, return with RC = 4. (Enough space may be available for the
program to complete processing. If enough is not available, the program generates
a message and terminates. Refer to "Further Considerations" below.)

8 -- Terminate the Program: If you want sort/merge to terminate, return with RC =
8. The job steps following the sort step are executed.

LINKAGE CONVENTIONS: Linkage conventions for this exit appear in the following
table:

r k) 1
|Code Sorts/Merge Uses to Enter |code Your Routine Uses to Return |
| Your Routine |to Sort/Merge |
L g 4 4
r + 4
| CALL E16 | ENTRY E16 |
| I . |
| | - |
| |E16 RETURN RC=x |
[l i 1
r 1
|x is the return code |
L J

FURTHER CONSIDERATIONS: For variable-length input records, sort/merge calculates
Nmax using the maximum record length. Therefore, Nmax tends to be lower than the
actual number of records the program can handle. If the maximum record length is
much larger than the average record length, Nmax is considerably lower than the
number of records the program can handle.

Sort/merge can calculate Nmax very accurately for fixed-length records. When
Nmax is reached, usually little additional space rerains.

If the input data set has no natural ordering, and if direct access devices
(balanced technique only) are used for intermediate storage, Nmax tends to be
larger than the number of records the program can handle.

Nmax is recalculated during the sort phase (balanced direct access technique
only) and the final value may be less than the original estimate.

EXITS FOR CLOSING DATA SETS (E17, E27, E37)

Your routines at these exits are executed once at the end of the phase with which
they are associated. They can be used to close data sets used by your other rou-
tines in the phase or to perform any housekeeping functions for your routines.

PHASE IN WHICH USED:

E17 Sort phase
E27 Intermediate merge phase
E37 Final merge phase

LINKAGE CONVENTIONS: The linkage conventions used with these exits appear in the
following table:

r) 1
|code Sort/Merge Uses to Enter |code Your Routine Uses to Return |
| Your Routine | to Sort/Merge |
L L ¥ |
L] v 1
| CALL E17 1 ENTRY E17 |
| | . |
| | - |
| |E17 CLOSE]
| | - I
| | . |
| | RETURN |
L L "]

92

READ/WRITE ERROR ROUTINES

You can use the six read/write error exits to incorporate your own or your instal-
lation's I/0 error recovery routines into the sort/merge program. When the sort/
merge program encounters an uncorrectable I/0 error, it passes the same parameters
as those passed by QSAM. The following information is passed to your synchronous
error routine:

General Register 0: This register always contains X'10" in the high-order byte.
The remaining three bytes contain the address of the input/output block (IOB)
associated with the error, as follows:

) T
| Xx'10° | IOB address
1

b cemen ed

General Register 1: The high-order byte of this register always contains zeros.
The remaining three bytes contain the address of the data control block (DCB)
associated with the error, as follows:

00 | DCB address

o= s

—

General Register 14: This register contains the return address of the sort/merge
program.

General Register 15: This register contains the address of your error routine.

Your read and write error routines can reside on a library, or can be placed in
SYSIN. Your library or SYSIN routines are brought into main storage with their
associated phases. (The E28 and E29 routines are reloaded for each pass of the
intermediate merge phase.)

Read Error Exits (E18, E28, E38)

PHASE IN WHICH USED:

E18 -- Sort phase

E28 -- Intermediate merge phase

E38 -- Final Merge phase
POSSIBLE USE OF ROUTINES: Your routines at these exits can pass a parameter list
containing the specifications for three data control block fields -- SYNAD, EXLST,
and EROPT -~ to the sort/merge program. Your E18 exit routine can pass a fourth
DCB field -- EODAD -- to sort/merge.

Your routines are entered first during the assignment component. of each phase
so that the sort/merge program can obtain the parameter lists. The routines are
entered again during the running components at the points indicated in the parame-
ter lists. For example, if you choose the EXIST option for your E18 routine,
sort/merge enters your E18 routine during the execution of the sort phase assign-
ment component. Sort picks up the parameter list, including the EXLST address.
During the running component, sort/merge enters your routine at the EXLST address
when the data set is opened.

Section 3: Program Modification

93

INFORMATION YOUR ROUTINE PASSES TO SORT/MERGE: Your routine passes the DCB fields
to sort/merge in a parameter list, the address of which it places in general
register 1 before returning to the sort/merge program. The parameter list must
begin on a fullword boundary and be a whole number of fullwords long. The high
order byte of each word must contain a character code that identifies the parame-
ter. One or more of the words can be omitted. A word of all zeros marks the end
of the list. The format of the list is:

Byte 1 Byte 2 Byte 3 Byte 4

r T

I 01 I SYNAD field |
b + i
| 02 | EXLST field I
k + T T -4
] 03 | 0 | 0 | EROPT code |
} L L L %
i o4 | EODAD field |
F t T T 1
| 00 | Y | Y | Y |
L 1 1 L]

A full description of these DCB fields is in the publication IBM System/360
Operating System: Supervisor and Data Management Macro Instructions. A brief
description of these fields follows:

SYNAD: This field contains the location of your read synchronous error routine.

This routine is entered only after the operating system has tried unsuccessfully

to correct the error. The routine must be assembled as part of your E18, E28, or
E38 exit routine. When the routine receives control, it must not store registers
in the save area pointed to by general register 13.

EXLST: This field contains the location of a list which contains pointers to your
routines that you want used to check labels and perform other functions not done
by data management. The list and the routines to which it points should be
included in your read error routine.

EROPT: The EROPT code is a means whereby you can specify what action sort/merge
should take if an uncorrectable read error is encountered. The three possible
actions and the codes associated with them are:

X*80' -- Accept the record (block) as is
X'40' -- Skip the record (block)
X'20'" -- Terminate the program

If you include this parameter in the DCB field list, you must place one of the
above codes in the low-order byte of the word. Bytes 2 and 3 of the word must
contain zeros.

When you use the EROPT option, the SYNAD field (and the EODAD field of exit
E18) must contain either of the following:

e The address of your read synchronous error routine (or end-of-file routine in
the EODAD field). These must be addresses within your exit routine.

e If you do not provide a read synchronous error routine or an end-of-file rou-
tine, the fields must contain X'01' in byte 4; bytes 2 and 3 must contain
zeros. You can use the instruction DC AL3(1l) to set up the field.

EODAD: This field is the address of your end-of-file routine. You can specify
this parameter at exit E18 only. If you specify it, your end-of-file routine must
be included in your exit routine. The end-of-file routine is used only for the
SORTIN data set.

94

LINKAGE CONVENTIONS: Linkage conventions for these exits are shown in the follow-

ing table:

ser refers to the read synchronous error routine
st refers to the EXLST address list

is EROQOPT code

|

Ix

r T

|Code Sort/Merge Uses to Enter |Code Your Routine Uses to Return
| Your Routine |to Sorts/Merge

| |

| CALL E18 | ENTRY E18

| I .

| | .

| |E18 LA 1,parm

| | RETURN

| i CNCP 0,4

| | parm DC Xx'o1’

| | DC AL3(ser)
| | DC X*02'

| | DC AL3(1st)
| | DC X'03'

| | DC XL3(x)

| | DC A(0)

| | -

] | .

| |ser error routine

] | .

| I .

| |1st address list

L L

v

]

I

|

L

Write Exror Exits (E19, E29, E39)

PHASE IN WHICH USED:

E19 —- Sort phase
E29 —- Intermediate merge phase
E39 ~— Final merge phase

POSSIBLE USES OF ROUTINE: Your routines at these exits can pass a parameter list
containing the specifications for two DCB fields —-— SYNAD and EXLST —- to the
sort/merge program.

Your routines are entered first during the assignrent component of each phase
so that the sort/merge program can obtain the parameter lists. The routines are
entered again during the running components at the points indicated by the optioms
in the parameter lists.

INFORMATION YOUR ROUTINE PASSES TO SORT/MERGE: Your routine passes the DCB fields

to sort/merge in a parameter list, the address of which it places in general
register 1 before returning to the sort. The list nust begin on a fullword boun-
dary and must be a whole number of fullwords long. The high-order byte of each
word must contain a character code that identifies the parameter. Either word can
be omitted. A word of all zeros indicates the end of the list. The format of the
list is:

. e S Wy——

Byte 1 Byte 2 Byte 3 Byte 4

r T 1

| 01 | SYNAD field |

s } |

v L]]

| 02 | EXLST field

L 4 4

L] 1) 1 h] 1

| 00 [0 | 0 [0 |

L i L 1 J
Section 3: Program Modification 95

A full description of these DCB fields can be found in the publication IBM
System/360 Operating System: Supervisor and Lata Management Macro Instructions.
A brief description follows:

SYNAD: This field contains the location of your write synchronous error routine.
This routine is entered only after the operating system has unsuccessfully tried
to correct the error. It must be assembled as part of your exit routine.

EXLST: The EXLST field contains the location of a list that contains pointers to
your routines that you want used to check labels and perform other functions not
done by data management. This list and the routines to which it points must be
included as part of your exit routine.

LINKAGE CONVENTIONS: Linkage conventions for these exits are shown in the follow-
ing table:

ser refers to the write synchronous error routine
st refers to the EXLST address list

r T L]
|Code Sort/Merge Uses to Enter |Code Your Routine Uses to Return |
| Your Routine |to Sort/Merge |
L [J
L) L) B}
CALL E19	ENTRY E19
	.
	E19 LA 1,parm
	RETURN
	CNOP 0,4
	paxrm DC x'01"
	DC AL3(ser)
	DC x'02"
	DC AL3(1st)
	DC A(0)
	.
	.
	ser error routine
	.
[.
	1st address list
I L i	
L J

CONTROL FIELD MODIFICATION EXIT (E61)

You can use a routine at this exit to lengthen, shorten, or alter any control
field within a record. The E option for the s parameters on the SORT or MERGE
control statement must be specified for control fields changed by this routine.
(Refer to the topic "Defining the Sort or Merge in Section 2.")

PHASE IN WHICH USED: Your routine is loaded with the running portion of each
phase and is executed whenever sort/merge encounters a control field specified by
the E option.

POSSIBLE USES OF ROUTINE: Your routine can normalize floating point control
fields or change any other type of control field in any way that you desire. You
should be familiar with the standard data formats used in System/360 before modi-
fying control fields.

INFORMATION SUPPLIED TO YOUR ROUTINE BY SORT/MERGE: Sort/merge places the address
of a parameter 1list in general register 1. The list begins on a fullword boundary
and is two fullwords long. It contains the number (in hexadecimal) of the control
field in the low-order byte of the first word, and the address of the control
field in the three low-order bytes of the second word as follows:

96

~— g

Byte 1 Byte 2 Byte 3 Byte 4

L)
00 | 00

1

00 01-40

- —

00 Control Field Address

[o——n m—
SRS SR

U p——

Before it passes your routine the control field address, sort/merge moves the
control field to an extract area, an area apart from the record. Your routine, in
effect, changes an image of the control field and not the control field itself.
Because of internal manipulation by sort/merge, the control fields appear in the
extract area in the following format:

Binary: Unchanged.
Character: Unchanged.
Fixed-point: The sign bit is inverted.

Positive floating-point: The sign bit is inverted.

Negative floating-point: The sign bit is inverted and the numeric portion of the
number is in one's complement notation; that is, zeros become ones and ones become
Zexros.

Packed decimal: The sign is considered a separate control field. It is inverted
and placed before the numeric portion of the number. If the records are to be
ordered in descending sequence, the numeric portion appears in one's complement
notation. For ascending sequence, the numeric portion is unchanged.

.Zoned decimal: The control field is converted to packed decimal and treated as
above.

For all fields except binary, the number of bytes sort/merge passes to your
routine is equal to the length specified in the m parameters of the SORT or MERGE
statement. The field your routine returns to sort/merge must contain the same
number of bytes.

All binary fields passed to your routine contain a whole number of Lytes. If a
binary field does not begin and end on a byte boundary, sort/merge pads it with
zeros at beginning and/or end.

Your routine cannot physically change the length of the control field. If you
must increase the length for collating purposes, you must specify that length in
the m parameter of the SORT or MERGE statement. If you must shorten the control
field, you must pad the field to the specified length before returning it to
sort/merge.

Sort/merge collates the modified control field in absolute ascending order.

LINKAGE CONVENTICNS: Linkage conventions for exit E61 are shown in the following
table:

T T 1
|Code Sort/Merge Uses to Enter |Code Your Routine Uses to Return |
|Your Routine |to Sort/Merge |
L 41 4
L} ¥)
| CALL E61 | ENTRY E61 |
| I - |
| | . |
| |E61 SAVE (5,9 |
] | - |
| | - |
| | RETURN (5,9) |
L 4 J

Section 3: Program Modification 97

Reference Data—Modification Routines

Register Conventions

|Field Contents |
L 1

) T ¥ 1

|EXIT] USE i PHASE | r 1 -
! } $ i |REGISTER USE |
|E11 |Assignment Opening |Sort | : $ 4
| |Data Sets | | | 1 | sort/Merge places address of pa-|
} + + | | rameter list in this register. |
|E15 |Record Change | sort } +]
F + } | 13 | Sort/Merge places address of a |
|E16 |NMAX | sort | | |save area in this register. |
b t - + i | |Area may be used to save con- |
|E17 |Closing data sets |Sort | | |tents of registers used by |
F + + i | | routine. |
1) L}] 1

|E18 |Read Error Routine |Sort | I3 } 4
} } + 4 | 14 |Contains address of sort/merge |
!E19 lWrite Errorxr RoutinelSort j ! !return point. j
L} ¥] 1 ¥ T A]
|E21 |Assignment Opening |Int. Merge | | 15 |Contains address of your rou- |
| |Data Sets | | | |tine. May be used as base |
b + } i | |register for routine. This o
|E25 |Record Change |Int. Merge | | |register is also used by routine]
3 + - ——+ 4 | |to pass return codes to |
|E27 |Closing Data Sets |Int. Merge | | | sort/merge. |
b-——1 + { L .
|E28 |Read Error Routine |[Int. Merge |

1 4 4

) T b}

|E29 |Write Error Routine|Int. Merge | -
L 1 d

1 T 1

|E31 |Assignment Opening |Final Merge |

| |Data Sets | A

k + + .

|E35 |Record Change |Final Merge |

L iy 1 d

¥ T L} i]

|E37 |Closing Data Sets |Final Merge |

t 1 [4

r T i 1

|E38 |Read Error Routine |Final Merge |

1 4 1 4

L] L) 1 b

|E39 |Write Error Routine|Final Merge |

i 1 4 d

| T 1 1

|E61 |Change Control |Al11l Phases |

| |

L J

Section 3: Program Modification 99

Section 4: Efficient Program Use

Once you become familiar with the basic functions of the sort/merge program, you
will be concerned with program efficiency -- how to get a faster sort or merge.
In this section the following subjects involving program efficiency are discussed:

e Information you can supply to the sort/merge program to optimize its
operation.

e Intermediate storage assignment for optimum performance.
e Multiprogramming efficiency considerations.

e System generation options and requirements.

Supplying Information to the Program

The information you give the sort/merge program about the application it is to
perform helps the sort and merge phases to produce a fast, efficient sort or
merge. When you do not supply information such as data set size and record for-
mat, the program must make assumptions, which, if incorrect, lead to inefficiency.

DATA SET SIZE

The most important information you can give the program is an accurate data set
size using the SIZE parameter of the SORT or MERGE statement. If you know the
exact number of records in the input data set, use that number as the value of the
SIZE parameter. If you do not know the exact number, estimate it as closely as
you can.

When the sort/merge program has accurate information about data set size, it
can make the most efficient use of both main storage and intermediate storage.

BLOCKING INPUT RECORDS

Sort performance is improved if you block input records. Ideally, you should use
the same blocking factor that the sort/merge program uses intermnally. If your '
machine configuration, main storage allotted to the program, and record size are
the same as one of those listed in the publication IBM System/360 Operating Sys-
tems: Sort/Merge Timing Estimates, Form C28-6662, use the figure given in the
sort block column. Otherwise, use the sort block figure corresponding to entries
that most closely describe your configuration.

RECORD FORMAT

When your input data set consists of variable length records, use the RECORD sta-
tement to supply maximum, minimum, and modal (most frequent) lengths to the sorts/
merge program. This information allows the program to calculate the optimum sort.

Intermediate Storage Assignment

If you can, avoid assigning the bare minimum amount of intermediate storage for a
given application. When a small amount of intermediate storage is assigned to the
program, more intermediate merge phase passes are necessary because only a small
number of record sequences can be merged at one time. Naturally, these extra
passes increase sorting time.

Section 4: Efficient Program Use

101

Likewise, when the program has only a small amount of main storage to operate
in, more intermediate merge phase passes are necessary because only a small number
of records can be sorted internally and more sequences are produced.

The sort/merge program operates efficiently when at least two selector channels
are available. A tape switching device also improves program performance, if the
device is connected so that two channel paths exist between each device and the
central processing unit that is running the sort/merge program.

ASSIGNING DIRECT ACCESS INTERMEDIATE STCRAGE

Program performance is improved if you use devices, storage areas, and channels
efficiently. If you use UNIT=2311, 2314, or 2301 on the DD statements that define
intermediate storage data sets, the program assigns areas, and some optimization
occurs automatically. But maximum performance is achieved if you follow these
recommendations:

® Use as many physical devices as you have availakle. (If you place more than
one intermediate storage data set on a disk, place them as close together as
possible to minimize access arm movement.)

® Use channel overlap whenever you can.

e On 2311 and 2301, assign as few data sets as possible. (You need at least
three. Three large data sets are more efficient than six smaller ones.) On
2314, assign as many data sets as possible, (17 maximum) but not more than one
for each device.

e Assign data sets of similar sizes.

Assigning more than three intermediate storage data sets (the minimum number)
on a 2311 disk or a 2301 drum decreases program efficiency unless you assign the
data sets to different devices. Sometimes you may need the maximum (six for the
2311 and 2301) number of data sets to handle a large input data set. To preserve
efficiency, assign them on separate physical devices.

For example, if a 100-track area is availakle on each of three 2311 disk
drives, you can handle more records if you define six data sets, each 50 tracks
long, two on each device, but you decrease efficiency. If the size of the input
data set permits, you can increase efficiency by defining fewer areas. For maxi-
mum efficiency, define three 100-track areas, each cn a different device.

If your intermediate storage is on 2314, you can obtain maximum efficiency by
assigning one data set per access arm. Also, efficiency decreases as the size of
your input data set approaches sort capacity.

If you use channel overlap program performance is improved because the program
can read input while writing output, etc.

Figure 15 shows a method for specifying channel overlap. The SEP parameter on
the SORTWKO1l DD statement requests that the operating system assign that data set -
to a channel other than the channel assigned to the SORTIN data set. The AFF pa-
rameter on the SORTWKO3 and SORTOUT DD statements requests that the SORTWKO03, and
SORTOUT data sets, also be on a channel that is different from SORTIN. The chan-
nel assigned to SORTWKO02 and SORTWKOU4 is not necessarily the same as the one
assigned to SORTIN.

The operating system will honor your channel assignment requests when the
necessary channel and device resources are available. If the requests cannot be
filled, the system assigns channels according to the resources it has. Therefore,
specifying channel overlap will never impair performance.

102

S

) 1
] : |
| //SORTIN DD DSNAME=INPUT,VOLUME=SER=000001,UNIT=2311,DISP=(0OLD,XEEP), X |
| /7 DCB=(RECFM=FB, LRECL=80,BIKSIZE=3200) |
| //SORTWKO01 DD DSNAME=WORK1, VOLUME=SER=000002,UNIT=2311, X |
| V4 SEP=SORTIN, SPACE= (TRK, (15),, CONTIG) |
i //SORTWK02 DD DSNAME=WORK2, VOLUME=SER=000003,UNIT=2311, X |
| /7 SPACE= (TRK, (15) ,,CCNTIG) |
| //SORTWK(03 DD DSNAME=WORK3, VOLUME=SER=000004,UNIT=2311, X |
| /7 AFF=SORTWKO1, SPACE= (TRK, (15), ,CCNTIG) |
| //SCRTWKO4 DD DSNAME=WORKU4,VOLUME=SER=000005,UNIT=2311, X |
| V4 SPACE= (TRK, (15) , ,CONTIG) : |
| //SORTOUT DD DSNAME=QUTPUT, VOLUME=SER=000006 ,UNIT=2311, DISP=(NEW,KEEP), X |
| /7 DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200), X |
| // AFF=SORTWKO01, SPACE= (TRK, (50) , ,CCNTIG) |
| |
L J
Figure 15. DD Statements Illustrating Channel Overlap

ASSIGNING TAPE INTERMEDIATE STORAGE

You can use the timing tables in the publication IBM System/360 Operating System
Sort/Merge Timing Estimates, Form C28-6662 as guide lines for assigning tape

intermediate storage.

Multiprogramming the Sort/Merge Program

You should consider the following factors when you execute the sort/merge program

with other programs:

e The sort/merge program may use many 1/0 devices for input, output, and inter-
mediate storage.

The sort/merge program tends to be I/C limited.

You should assign it a relatively high priority to be sure
that it gets control of the central processing unit frequently and does not
tie up the I/0 devices while it waits for CPU time.

program the sort with programs that are process limited.

Therefore, you should multi-

When a single task attaches two or more sort applications by ATTACH, LINK, or
XCTL, you must modify the standard DD names (SORTIN, SORTOUT, etc.) so that
Do this by specifying four letters in the parameter 1list

they are unique.
passed to the sort/merge program.

These characters replace the letters SORT

in the references to standard DD names in sort/merge program modules. (For
more information, see the topic "Passing Parameters to the Sort" in Section

2.)

System Generation Options and Requirements

When the operating system for your installation is generated, certain sort/merge

facilities may be included; others may not be.
available at your installation.

facilities that can be included when the program is generated:

Sort or
Sort or
sort or

Operate

merge fixed-length records.

merge variable-length records.

merge records over 256 bytes long.

with any or all allowable intermediate storage devices.

type can be used for a specific sort run.)

Section 4:

You should be aware of what is
The following list is a summary of the sort/merge

(Only one

Efficient Program Use 103

¢ Sort or merge multiple control fields.
e Use sort/merge program exits.
e Print non-critical program—-generated messages.

e Use (a specific number) of bytes of main storage as a maximum for sort/merge
execution.

Selecting only the required program facilities conserves library space. If you
attempt to execute an option that was not selected, the program terminates abnor-
mally. System generation is described in the publication IBM System/360 Operating
System: System Generation, Form C28-6554.

LIMITING MAIN STORAGE

If the maximum amount of main storage to be used by the sort/merge program was not
specified at system generation time, the program assumes a maximum of 15,500
bytes. The program requests 12,000 bytes leaving 3,500 bytes for system func-
tions, Performance usually improves as the program is given more main storage.
Approximately UUK bytes of main storage are needed for efficient execution of the
sort/merge program, and performance usually increases as more main storage is made
available. .

The maximum amount of main storage that can be made available to the program
can be determined by subtracting the amount of storage required by system func-
tions from the total amount available. The amount of main storage required for
the execution of various operating components is given in the publication IBM
System/ 360 Operating System: Storage Estimates, Form C28-6551. The publication
IBM System/360 Operating System: System Generation, Form C28-6554, gives a formu-
la for calculating the maximum amount of main storage.

On an execution by execution basis, you can change two of the system generation
specifications: main storage size and types of messages printed.

ALTERING THE MAIN STORAGE ALLOCATION

You can override the amount of main storage specified at system generation time by
using the PARM field of the EXEC statement. Write the field as follows:

PARM="CORE=XXXXXX"'

where xxxxxx is the amount of main storage in bytes that you want to operate with.
XXXXXX cannot be less than 12,000, and at this value, some combinations of I/0
devices and record lengths make a successful sort impossible. For MVT, the region
size must be bigger than the sort size. Region size shculd be approximately 1.2
times the sort size + 8K. The main storage value is changed only for the current
job step; afterwards, the value reverts to the one specified at system generation
time.

Changing the main storage allocation is useful when you are running a sort/
merge application in a multiprogramming environment. By reducing the amount of
main storage allocated, you impair sort/merge performance so that other programs
can have the storage they need to operate simultaneocusly. By increasing the allo-
cation,. you can run large sort/merge applications efficiently at the expense of
other jobs sharing the multiprogramming environment.

104

~—

ALTERING THE MESSAGE SPECIFICATION

You can override the message option selected at system generation by using the
PARM field of the EXEC statement. Write the field as follows:

PARM="'MSG=xx"

where xx is a two-character code that specifies what kind of messages you want
printed and where you want them to appear.

NO

cC

Ccp

AC

AP

means that you want no messages to be printed.

means that you want critical messages only to be printed and you want them to
appear on the console.

means critical messages only and that you want them to appear on the printer.

means that you want all messages (critical and informational) printed on the
console.

means that all messages are to be printed on the printer.

The time factor involved in printing messages is relatively small. The printer

is slightly faster that the console so you probably could save a few seconds by
specifying CP or AP rather than CC or AC.

Section 4: Efficient Program Use 105

The following terms and phrases are defined
as they are used in this publication.

ascending Sequence: A sequence of records
such that the control word of each succes-
sive record collates equal to or greater
than that of the preceding record.

assignment component: A sort/merge program
component that establishes the basic con-
stants needed for program execution and
initializes running components for a spe-
cific application.

block: A group of contiguous data read or
recorded by an I/O device as one unit.

collating sequence: A predetermined
sequence into which data can be sorted or
merged.

control field: A group of contiguous data
within a record that forms all or part of a
control word.

control word: A group of control fields
used to order records according to the
collating sequence during a sort or merge.

descending sequence: A sequence of records
such that the control word of each succes-

sive record collates equal to or less than

that of the preceding record.

input data set: The data set (or data
sets) used as input to the sort/merge
program.

intermediate storage data set: A partially
sequenced data set that is either input to
or output from an intermediate merge phase
pass.

major control field: The control field
that is most significant in determining the
collating sequence of a record.

merge: The process used to form one sorted
sequence of records from two or more pre-
viously sorted sequences. Also, a program
or routine that performs this function.

merge pass: The passing of all the records
used as input to the sort/merge through a
program phase which merges previously
sorted sequences into fewer, longer
sequences.

minor control field: A control field which
is less significant than the major control
field in determining the collating sequence

Glossary

of a record. Successive minor control
fields are considered to be in decreasing
order of significance.

modal length: The record length that
occurs most frequently in a variable-length
record data set used as input to the sorts/
merge programe.

nmax: The estimated maximum number of
records of a given length that can be
sorted using a given amount of intermediate
storage.

output data set: The sequenced data set
which is produced by a sort/merge program
execution.

phase: A portion of the sort/merge program
that is designed to perform one of the fol-
lowing functions: definition, optimiza-
tion, sorting, intermediate merging, or
final merging.

program exit: A place in the executable
code of the sort/merge program component at
which a user-written routine may be given
control to perform various functions.

record: A group of contiguous characters
which is processed as a unit by the sort/
merge program.

running component: A sort/merge program
component that performs a sorting or merg-
ing operation on the data set used as input
to the program. Running components are
initialized by assignment components.

sequence: A group of records that have
been collated into a predesignated order.

sequence distribution technique: One of

several methods used by the sort/merge pro-
gram to combine previously sorted sequences
of records into fewer, longer seguences.

sort: The process used to collate the
records in a data set of unknown order.
Also, a program or routine that performs
this function.

sort blocking factor: The blocking factor
used by the sort/merge program for interme-
diate storage data sets.

user-written routine: A routine written by
the user to perform various functions at a
sort/merge program exit.

Glossary 107

The

Appendix A: Summary of How to Use the Sort/Merge Program

following is a summary of what you need to do to use the sort/merge program:

Prepare sort/merge control statements defining the sorting or merging applica-
tion. (Refer to the topic "Defining the Sort or Merge" in Section 2).

For a sorting application, determine the amount of intermediate storage the
sort/merge program will need for your data set. (Refer to the topic "Deter-
mining Intermediate Storage Requirements" in Section 2.)

Prepare job control language statements to accompany the sort/merge state-
ments. (Refer to the topic "Required Job Control Language Statements"™ in Sec-
tion 2.)

The following chart shows the three points mentioned above in greater detail.
The chart does not cover the following points:

EXEC statement PARM field optiomns: forcing a sequence distribution technique
(Refer to "Sequence Distribution Techniques"™ in Section 1 for descriptions of
the techniques; and "Job Control Language for Sort/Merge" in Section 2 for how
to code the option), message option (refer to "Jcb Control Language for Sort/
Merge" in Section 2), core value option (refer to "Job Control Language for
Sort/Merge" in Section 2.)

The checkpoint option. (Refer to "Defining the Sort or Merge" in Section 2
for how to select the option, and "Job Control Language for Sort/Merge" for
information on the required SORTCKPT DD statement.)

Achieving maximum sort/merge efficiency. (Refer to "Section 4: Efficient
Program Use.")

Appendix A: Summary of How to Use the Sort/Merge Program 109

Appendix B: Considerations for MVT Users—Summary

REGION SIZE

The SORT cataloged procedure requests a region size of 98K. The SORTD cataloged
procedure requests 26K.

A formula for determining region size is given in Section 1: "Determing Region
Size."
OPTIONAL CHARACTERS FOR DD NAMES
If a task initiates two or more sort/merge applications via ATTACH, LINK, or XCTL,
this option must be selected. It is discussed in the toric "Passing Parameters to
the Sort" in Section 2.
ALTERING THE MAIN STORAGE ALLOCATION
The amount of main storage assigned to sort/merge at system generation can be
changed. It can be temporarily increased to improve sort/merge performance or
temporarily decreased to permit other programs to obtain main storage. Refer to
"Altering the Main Storage Allocation"™ in Section 4 for further details.

OTHER

Refer to "Multiprogramming the Sort/Merge Program" in Section 4.

Appendix B: Considerations For MVT 113

~—

Appendix C: Standard System/360 Operating System
Collating Sequence

The following table shows the collating sequence for character and unsigned deci-
mal data. The bit configuration shown is EBCDIC. The collating sequence is based
on the EBCDIC representation of the graphic and ranges from low (00000000) to high
(11111111). The bit configurations which do not correspond to graphics (e.g., 0 -
73, 81 - 89, etc.) are not shown. Some of these correspond to control commands
for the printer and other devices.

Packed decimal, zoned decimal, fixed-point, and normalized floating-point data
is collated algebraically; i.e., each quantity is interpreted as having a sign.

Collating
Sequence Bit Configuration Graphic Meaning
00000000
74 01001010 & Cent sign)
75 01001011 . Period, decimal point
76 01001100 < Less than sign
77 01001101 (Left parenthesis
78 01001110 + Plus sign
79 01001111 i Vertical bar, Logical OR
80 01010000 & Ampersand
90 01011010 H Exclamation point
91 01011011 $ Dollar sign
92 01011100 * Asterisk
93 01011101) Right parenthesis
94 01011110 H Semri colon
95 01011111 1 Logical not
96 01100000 - Minus, hyphen
97 01100001 / Slash
107 01101011 y Corrma
108 01101100 % Percent sign
109 01101101 _ Underscore
110 01101110 > Greater than sign
111 01101111 2 Question mark -
122 01111010 : Colon
123 01111011 # Numrber sign
124 01111100 a At sign
125 01111101 ' Apostrophe, prime
126 01111110 = Equals sign
127 01111111 " Quotation marks
129 10000001 a
130 10000010 b
131 ' 10000011 c
132 10000100 d
133 10000101 e
134 10000110 £
135 10000111 g
136 10001000 h
137 10001001 i
145 10010001 j
146 10010010 k

Appendix C: Standard System/36 115

147
148
149
150
151
152
153

162
163
164
165
166
167
168
169

193
194
195
196
197
198
199
200
201

209
210
211
212
213
214
215
216
217

226

233

249

116

10010011
10010100
10010101
10010110
10010111
10011000
10011001

10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001

11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001

11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001

11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001

11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
111131001

RQmo o8 8-

NKMsES<aAHR®n Hom"ozRH RO HIQoHBEOOD > X Ed

VoOoONOOUFWNEO

[

Appendix D: Sort/Merge Messages

The sort/merge program generates two kinds IEROO1A
of messages -— those which result from

critical error conditions and those which

give information about the program's opera-

tion. The printing of either all messages

or only critical messages can be specified

at system generation. The messages can

either be printed on a printer or at the

operator's consocle.

The message options set up at system
generation can be overridden on a job step
by jobstep basis by coding the MSG parame-
ter in the PARM field of the EXEC state-
ment. Refer to the topic "EXEC Statement"”
in "Section 2: How To Use The Sort/Merge
Program," for a complete discussion of the
MSG parameter.

IER002A

The sort/merge program analyzes control
statements in two stages. Stage 1 analyzes
the general format of control statements.
Stage 2 analyzes the information contained
in the sort/merge control statements and
job control language statements. Stage 2
checks for sort syntax and contents errors.
Each statement is scanned for errors. The
first error detected stops the scan for
that statement. The program prints a mes-
sage and continues the scan on successive
statements.

When the program encounters a critical
error in either stage, it prints a message
and continues to analyze control informa-
tion until the current stage is completed,
then the program terminates. Thus, if a
critical error is found in Stage 1, the
program terminates at the end of Stage 1;
if the error is encountered in Stage 2, the
program terminates at the end of Stage 2.
The system action that results from
encountering a critical control information
error is described in the messages as ei-
ther "Stage 1 termination" or "Stage 2
termination.”

The messages are listed and explained in
message code order, from IER001 to to
IER068. The last character of each message
(A or I) indicates the severity of the mes-
sage. A means that programmer action is
required. I means that the message is an
informational one and no action is
required. The explanations of all critical
messages begin with "Critical.”

- COL 1 OR 1-15 NOT BLANK

Explanation: Critical. Column

1

of a sort/merge control statement

is not blank, or columns 1 thro
15 of a sort/merge continuation
card are not blank.

System Action: Stage 1
termination.

User Response: Check control
statements for nonblank charact
in column 1, and continuation

ugh

ers

cards for nonblank characters in

columns 1 through 15.

- EXCESS CARDS

Explanation: Critical. This m

es—

sage is generated for one of four

reasons:

s More than 33 control cards
supplied to the sort/ merge
program.

® A sort/merge control statem
type appears more than once
(For example, there is more
than one SORT statement.)

* The control statements pass
to the sort/merge program d

are

ent

ed
ur-

ing an ATTACH, LINK, or XCTL
operation contain more infor-
mation than is allowed for the

statements passed.

e A control statement occupies
more than the allowable number:

of cards.

System_ Action: Stage 1 termina-
tion. The program does not ana-

lyze control cards above the 33
limit or duplicate type state-

ments. If the sort was activat
by an ATTACH, LINK, or XCTL, no
information is processed.

ed

User Response: Check for too many

control cards, duplicate statem
types, and, if the sort was act

ent
i-

vated by an ATTACH, LINK, or XCTL,

more information than allowed.

Appendix D: Sort/Merge Messages

117

IEROO3A

IEROOL4A

IEROOS5A

IER006A

IER007A

118

= NO CONTIN CARD

Explanation: Critical. A con-
tinuation card has been indicated

by a nonblank character in column
72 of the previous card and no
card follows.

System Action:
termination.

Stage 1

User Response: Check for a key-
punching error, an overflow of
parameters into column 72, or a
missing continuation card.

— INVALID OP DELIMITER

Explanation: Critical. A control
statement ends with a comma or
other incorrect delimiter.

System Action:
termination.

Stage 1

User Response: Check for operands
that are incorrectly split between
control and continuation cards.
Refer to the topic "Continuation
Cards" in Section 2.

STMT DEFINER ERR

Explanation: Critical. A control
statement that should contain an
operation definer (SORT, MERGE,
RECORD, MODS, or END) does not
contain an acceptable one.

System Action:
termination.

Stage 1

User Response: Check all state-
ments for incorrect, misplaced, or
misspelled operation definers.

— OP DEFINER ERR

Explanation: Critical. The first
operand of a control statement
does not begin on the same state-
ment as the operation definer.

System Accion:
termination.

Stage 1

User Response: Check for state-
ments that contain only the opera-
tion definer.

— SYNTAX ERR - XXX

Explanation: Critical. A control
statement contains an error in
syntax. Xxxx is a 3-character code

IER0OO8A

IERO09I

IERO10A

("s/M," "REC," or "MOD") that
indicates the control statement in
which the error occurred.

System Action:
termination.

Stage 2

User Response: Check the control
statements for syntax errors.
Some of the more common syntax
errors are:

e Unbalanced parentheses.
e Missing commas.
e Embedded blanks.

— FLD OR VALUE GT 8 CHAR - XXX

Explanation: Critical. A parame-—
ter greater than 8 characters has
been specified. xxx is a 3-
character code ("S/M," "REC," ox
"MOD") that indicates the control
statement in which the error
occurred.

System Action:
termination.

Stage 2

User Response: Check control
statements for parameters with
nmore than eight characters.

— EXCESS INFO ON CARD - xxx

Explanation: More information
than necessary appears in a con-
trol statement. This could pos-—-
sibly be caused by a syntax error
which cannot be diagnosed by the
program. XxxX is a 3-character
code ("S/M," "REC," or "MOD") that
indicates the control statement in
which the error occurred. This
message is also printed when com-
ments appear on a card.

System Action: The excess infor-
mation is treated as a comment.

User Response: Check control
statements, unless comments are
intended.

- NO S/M CARD

Explanation: Critical. All con-
trol statements have been pro-
cessed and no SORT or MERGE con-
trol statement has been found.

System Action:
termination.

Stage 2

User Response: Supply a SORT or
MERGE control statement.

IERO11A

IERO12A

IERO13A

IERO1L4A

IERO15A

- TOO MANY S/M KEYWORDS

Explanation: Critical. More than
the maximum of 5 keyword operands
are defined on a SORT or MERGE
control statement.

IERO16A
System Action:
termination.

Stage 2

User Response: Check SORT orxr
MERGE control statement for too
many keyword operands.

- NO FLD DEFINER

Explanation: Critical. A SORT or
MERGE control statement does not
contain a control field
definition.

IERO017A
System Action:
termination.

Stage 2

User Response: Check SORT or
MERGE control statement for lack
of a control field definition
(FIELD operand).

- INVALID S/M KEYWORD

Explanation: Critical. An inval-
id keyword operand has been
detected on a SORT or MERGE con-
trol statement.
System Action: IERO18A
termination.

Stage 2

User Response: Check SORT or
MERGE control statement for inval-
id keyword operand.

— DUPLICATE S/M KEYWORD

Explanation: Critical. A keyword
operand is defined twice on a SORT
or MERGE control statement.

System Action:
termination.

Stage 2

User Response: Check SORT or IERO019A
MERGE control statement for a mul-

tiply defined keyword operand.

- TOO MANY PARANMETERS

Explanation: Critical. Too many
parameters are associated with a
keyword operand on a SORT or MERGE
control statement.

Appendix D:

System Action:
termination.

Stage 2

User Response: Check SORT or .
MERGE control statement keyword
operands for too many parameters.

-— INVALID VALUES IN FLD

Explanation: Critical. An inval-
id number of values is specified
with a FIELDS operand on a SORT or
MERGE control statement.

System Action:
termination.

Stage 2

Usex Response: Check values in
control field definitions on SORT
or MERGE control statement.

- ERR IN DISP LENGTH VALUE

Explanation: Critical. An inval-
id length or displacement (posi-
tion) value is specified in a con-
trol field definition on a SORT or
MERGE control statement.

System Action:
termination.

Stage 2

User Response: Check length and
position values specified in the
FIELDS operand on a SORT or MERGE
control statement.

- CTL FLD ERR

Explanation: Critical. An error
in specifying the type of control
field defined in a SORT or MERGE
control statement has been
detected.

System Action:
termination.

Stage 2

User Response: Check control
field types on SORT or MERGE con-
trol statement for keypunching or
other errors in specification.

- SIZE/SKIPREC ERR

Explanation: Critical. An error
in specifying the SIZE operand in
either a SORT or MERGE control
statement, or the SKIPREC operand
in a SORT control statement, has
been detected.

System Action:
termination.

Stage 2

Sort/Merge Messages 119

IERO20A

IERO21A

IER022A

IERO023A

120

User Response: Check SORT or TIERO24A
MERGE control statement for inval-

id SIZE or SKIPREC operand.

— INVALID REC KEYWORD

Explanation: Critical. An inval-

id keyword operand has been found

in a RECORD control statement.

System Action: Stage 2

termination.

User Response: Check RECORD con-

trol statement for keypunching or IER025A
other error in a keyword operand.

— NO TYPE DEFINER

Explanation: Critical. A RECORD

control statement has been found

without a TYPE operand.

System Action: Stage 2

termination.

User Response: Check RECORD con-

trol statement for lack of TYPE

operand.

— RCD FORMAT NOT F/V IER026A
Explanation: Critical. An error

in specifying the value associated

with the TYPE operand of a RECORD

control statement has been

detected.

System Action: Stage 2

termination.

Usexr Response: Check the RECORD

control statement for keypunching

or other errors resulting in TYPE

operand value being some character

other than F (fixed-length rec- IER027A

ords) or V (variable-length
records).

— NO LENGTH DEFINER

Explanation: Critical. The
LENGTH operand of a RECORD control
statement is not present.

System Action:
termination.

Stage 2

Check RECORD con-
for lack of LENGTH

User Response:
trol statement
operand.

— ERR IN LENGTH VALUE

Explanation: Critical. An incor-
rect value is associated with the
LENGTH parameter of a RECCRD con-
trol statement.

System Action:
termination.

Stage 2

User Response: Check RECORD con-
trol statement for incorrectly
specified length value.

- RCD SIZE GT MAX

Explanation: Critical. The reco-
rd size specified on a RECORD con-
trol statement is greater than the
maximum allowed by the program.

System Action:
termination.

Stage 2

User Response: Check RECORD con-
trol statement for incorrectly
specified record length.

- L1 NOT GIVEN

Explanation: Critical. The
LENGTH operand of a RECORD control
statement lacks an 1, value.

System Action:
termination.

Stage 2

User Response: Check RECORD con-
trol statement for lack of 1,
value in LENGTH operand.

- CF BEYOND RCD

Explanation: Critical. A control

field has been defined as extend- -
ing beyond the minimum record

length specified in a RECORD con-

trol statement.

System Action:
termination.

Stage 2

User Response: Check SORT or
MERGE control statement for incor-
rectly specified control field
displacement. Check RECORD con-
trol statement for incorrectly
specified maximum record length
(12).

N

IER028A

IERO029A

IERO030A

IERO31A

- TOO MANY EXITS

Explanation: Critical. An
attempt has been made to activate
more than the maximum number of
program exits allowed by the pro-
gram (17).

System Action:
termination.

Stage 2

User Response: Reduce the number
of exits specified in the MODS
control statement.

- IMPROPER EXIT

Explanation: Critical. This mes-
sage is generated for one of two
reasons:

e An exit other than the 17
allowed by the program has
been specified on a MODS con-
trol statement.

e An exit in the sort or inter-
mediate merge phase of the
program has been activated
during a merge application.

System Action:
termination.

Stage 2

User Response: Check MODS control
statement for keypunching error orx
other error resulting in specifi-
cation of invalid program exit
number. If a merge is being per-
formed, check MODS control state-
ment for exit numbers which refer
only to sort or intermediate merge
phase exits.

- MULTIPLY DEFINED EXIT

Explanation: Critical. A program
exit has been defined twice in
MODS control statement.

System Action:
termination.

Stage 2

User Response: Check MODS control
statement for multiply defined
exits.

— INVALID MODS OP CHAR

Explanation: Critical. An inval-
id character in a parameter of a
MODS control statement has been
found.

System Action:
termination.

Stage 2

IERO032A

IERO33A

TIERO34A

Appendix D:

User Response: Check the parame-
ters of a MODS control statement
for a length field containing
something other than numeric data,
a source or name field beginning
with something other than an
alphabetic character, or a source
or length field containing a spe-
cial character other than §, a, or
#.

- EXIT E61 REQUIRED

Explanation: Critical. A SORT or
MERGE control statement defines a
control field calling for user-
written routine (this is done by
specifying E for the control field
sequence indicator), and exit E61
is not activated by a MODS control
statement.

System Action:
termination.

Stage 2

User Response: Check SORT or
MERGE control statements for key-
punching errors resulting in the
specification of an E type parame-
ter. Check the MODS control sta-
tement, for lack of an E61
specification.

~ CF SEQ INDIC E REQUIRED

Explanation: Critical. Program
exit E61 is activated and no con-
trol fields have been specified
for user modification (E control
field sequence parameter missing
on SORT or MERGE control
statement).

System Action:
termination.

Stage 2

User Response: Check MODS, and

SORT or MERGE control statements -

for keypunching errors resulting
in the activation of exit Eé61 and
the lack of an E type parameter on
the SORT or MERGE control
statement.

— PARAM ERR FOR MODS

Explanation: Critical. An incor-
rect number of parameters follow
an operand definer on a MODS con-
trol statement, or SYSIN is speci-
fied on the MODS statement as the
source for user-written routines,
and no //SORTMODS DD statement is
present.

Sort/Merge Messages 121

IERO035A

IERO36I

IERO37I

IERO038I

122

System Action:
termination.

Stage 2

User Response: Check MODS control
statement for parameter specifica-
tion error.

— DUPLICATE MOD RTN IN PHASE

Explanation: Critical. The same
user-written routine is being used
for more than one exit in a sort/
merge program phase, or two or
more routines have the same name.

IER039A

System Action:
tion.

Stage 2 termina-

User Response: Check the MODS
control statement for improper use
of duplicate names. Duplicate
names within a phase may be used
only when the user-written rou-
tines are to be link edited
together, and they are in one load
module.

~ B = XXXXXX

Explanation: This message com—
municates the blocking used by the
sort for intermediate storage rec-
ords. For fixed-length records,
the blocking factor is substituted
for xxxxxx in the message text.
For variable-length records, the
size of the buffer area is substi-
tuted for xxxxxx in the message
text.

System Action: None.

User Response: None.

IEROL4ORZ
- G = XXXXXX

Explanation: This message com-—
municates the number of records
that can fit into the program's
record storage area at omne time
during a sort. The number of rec-
ords is substituted for the xxxxxx
in the text of the message as
shown above.

System Action: None.

Usexr Response: None.

— NMAX = XXXXXX

Explanation: This message com-—
municates an estimate of the maxi-
mum number of records that can be
sorted using the intermediate

storage and main storage available
to the sort for the current appli-
cation. The number replaces the
xxxxxxX in the text of the message
as shown above.

System Action: None.

None.

Usex Response:
— INSUFFICIENT CORE

Explanation: Critical. There is
not enough main storage available
to the sort to allow program
execution.
System Action: The program
terminates.

User Response: The sort requests
main storage from 12,000 bytes to
the maximum amount specified by
the user at system generation.

For any given execution, the mini-
mum amount required depends upon
the number of intermediate storage
data sets, the record length, and,
the block size. Reducing the
number of intermediate storage
data sets reduces the amount of
main storage required for buffer
areas. If the number of interme-
diate storage data sets is at the
minimum allowed for the applica-
tion, reducing the block size may
also reduce the amount of main
storage needed for buffer areas.
If such corrective action is not
possible, the user-specified maxi-
mum must be increased using the
CORE parameter in the PARM field
of the EXEC statement.

- INSUFFICIENT WORK UNITS

Explanation: Critical. There is
not enough intermediate storage
available to the sort to allow
program execution.

System Action:
termination.

Stage 2

User Response: Check DD state-
ments for errors. Check to see if
less than three intermediate
storage units were assigned.
Assign more intermediate storage
to sort. If 2311 disks or 2301
drums are assigned, check to be
sure that at least three areas of
at least three tracks each are
specified on the DD statements.
With the 2314 facility, three data
sets of at least five tracks each
must be assigned.

IEROL4IA

IEROU2A

IERO43A

- N GT NMAX

Explanation: Critical. The num-
ber of records specified in the
SIZE operand of a SORT control
statement is greater than the
maximum sort capacity calculated
by the program.

System Action: The program termi-
nates unless data set size was
estimated or not given; then sort
continues.

User Response: Check SIZE operand
of SORT control statement for
error. If SIZE operand is
correct, check DD statements for
an error in assigning intermediate
storage. If DD statements are
correct, assign more intermediate
storage to the program and rerun.

— UNITS ASGN ERROR
Explanation: Critical. A. Dif-
ferent types of intermediate
storage devices, or an invalid
combination of input, work, and
output devices have been assigned
to the sort. B. Duplicate
ddnames have been specified.

System Action:
termination.

Stage 2

Usexr Response: A. Assign inter-
mediate storage so that all units
are of the same type, i.e., all
are either direct-access units or
tape units. Only when 7-track
tape is used for the input unit
may it be used for the intermedi-
ate storage units and the output
units. B. Check DD statements
for duplication.

— DATA SET ATTRIBUTES NOT
SPECIFIED

Explanation: Critical. DD state-
ments that define the input and
output data sets conflict with
each other or lack any of the fol-
lowing information:

e Input or output blocking fac-
tor (BLKSIZE).

¢ Record format (RECFM).

e Record length (LRECL).

System Action:
termination.

Stage 2

User Response: Correct statements

and rerun job.

IERO44T

IEROU5T

IEROLG6A

Appendix D:

- EXIT Exx INVALID OPTION

Explanation: BAn invalid data con-
trol block field specification was
passed to the sort/merge program
at exit E18, E19, E28, E29, E38,
or E39. The xx value in the above
message text is replaced by the
number of the exit at which the
error occurred.

System Action:
is ignored.

The invalid option

User Response: Check the parame-
ter list passed by the user-
written routine against the fol-
lowing table before rerunning the
application. BAn x indicates which
options are allowed with the exit
in question.

r . T T T T T T 1
|Option |E18|E19|E28|E29|E38|E39]|
| 1 1 1 4 4 4

] L]]] L] T 1

SYNAD x|l x|l x| x| x| x|
1 i [[1 [[

T T L] T T T 1

EXLST |l x 1 x| x| x| x| x|
I 1 i 1 1 i 1 3
r T L 1]) L] t 1
IEROPT | x| | x| | x| |
L L 4+ 1 i 1 1 4
) LI L] L]]]] 1
|lEopap | x| | L L 1 |
L L L L] L L J

— END SORT PH

Explanation: The program's sort
phase has been successfully
executed.

System Action: None.

User Response: None.

— SORT CAPACITY EXCEEDED

Explanation: Critical. The sort
has used up all available interme-
diate storage and the input data
set has not been exhausted.

System Action: The program

terminates.

User Response: If magnetic tape
is used for intermediate storage,
be sure all reels contain full
length tapes. (Short tapes may
result from excessive write
errors.) If all reels contain
full length tapes, rerun the ap-
plication with more intermediate
storage. If a direct access
device is used for intermediate
storage, assign more tracks.

Sort/Merge Messages 123

IEROLTA

IERO48T

IERO49I

124

- RCD CNT OFF,
XXXXXX

IN xxxxxx, OUT IERO50I

Explanation: Critical. The num-
ber of records entering and leav-
ing a program phase are not equal;
these numbers do not include rec-
ords inserted or deleted by user-
written routines. If an actual
data set size was specified in the
SIZE parameter of the SORT control
statement, it is placed in the IN
field of this message. This mes-
sage can appear in phase 1 or
phase 2. In phase 3 the message
is RCD CNT OFF and message IERO54I
contains the count. The numbers
replace the values specified as
xxxxxxX in the text of the message
as shown above.

IER051A

System Action:
terminates.

The program

User Response: Check for valid
SIZE value. If correct, rerun the
job.

IERO521

- NMAX EXCEEDED

Explanation: The sort has
exceeded the calculated sort ca-
pacity while processing the ingut
data set, and exit E16 is
specified.

System Action: The user-written IEROS53A
routine at exit El16 is entered.

(See the section "Program Modifi-

cation," for further information.)

User Response: None. (The number
of records sorted is equal to the

Nmax calculated by the sort. See

sort message IER038I.)

— SKIP MERGE PH

Explanation: It is not necessary
to execute the intermediate merge
phase to complete a sorting appli-
cation because the number of
sequences created by the sort

phase is < the merge order. IEROS4T

System Action: Control is passed
directly from the sort phase to
the final merge phase.

User Response: None.

- END MERGE PH

Explanation:
mediate merge phase has been suc-

cessfully executed.

System Action: None.

User Response: None.

— UNENDING MERGE

Explanation: Critical. There is
not enough intermediate storage
assigned to successfully complete
the program's intermediate merge
phase.

System Action:
terminates.

The program

User Response: Rerun the job
after assigning more intermediate
storage to the sort/merge program.

- EOJ

Explanation: The program's final
merge phase has been successfully
executed.

System Action: Return is made to
the operating system for a normal
end of task.

User Response: None.
- OUT OF SEQ
Explanation: Critical. The cur-

rent record leaving the final
merge phase is not in collating
sequence with the last record
blocked for output.

System Action:
terminates.

The program

User Response: If a user-written

routine was modifying the records
leaving the final merge phase at
the time this message was
generated, check the routine
thoroughly. If not, rerun the
job.

- RCD IN xxxXxxXX, OUT XXXXXX

Explanation: This message lists
the number of records accepted by
the sort as input and the number
of records in the output data set.
The numbers replace the xxxxxx in
the text of the message as shown

The program's inter-

IERO0551

IERO56A

IERO57A

IERO58A

above. Leading zeros are sup-
pressed; if there were no records
in the input data set, this field
will be blank. In a merging app-
lication, the RECORDS IN field is
blank unless an actual data set
size was specified in the SIZE
parameter of the MERGE control
card. When an actual size is spe-
cified, it is inserted in the IN
field of the message.

IERO59A

System Action: None.

User Response: None.

— INSERT xxxxxXX, DELETE XXXXXX

Explanation: The number of rec-
ords inserted and/or deleted dur-
ing a sort/merge program execution
replaces the values shown as
xXXxXxxX in the above format.

System Action: None.

User Response: None.

—~ SORTIN/SORTOUT NOT DEFINED

Explanation: Critical. SORTIN
and/or SORTOUT do not appear as
ddnames on DD statements supplied
to the sort/merge program. This
message can also appear when DD
statements are supplied for a
merge, and a SORT control state-
ment is given instead of a MERGE
statement.

IER060A

System Action:
terminates.

The program

User Response: Check DD state-

ments for error.

- SORTIN NOT SORTWKOL1 yori0

IER061A
Explanation: Critical. An inter- B
mediate storage data set other

than SORTWKO1l was assigned to the

same tape drive as SORTIN.

System Action:
terminates.

The program

User Response: Check DD state-

ments for error.

~ SORTOUT A WORK UNIT

Explanation: Critical. SORTOUT
was specified on the same tape
drive as an intermediate storage
data set.

Appendix D:

System Action:
terminates.

The program

User Response: Check DD state-

ments for error.

- RCD LNG INVALID FOR DEVICE

Explanation: Critical. The rec-
ord length in the input data
set(s) is either less than 18
kytes, or is too large for the
assigned intermediate storage
devices. (For example, a record
which can not be contained on one
disk track is too large.)

System Action:
terminates.

The program

Usex Response: If the record
length is too large, assign a dif-
ferent type of intermediate
storage device. If the length is
too small, redefine the sort with
a record length of at least 18
kytes.

- DSCB NOT DEFINED

Explanation: Critical. A DD
statement used to define a direct
access intermediate storage data
set is incorrect.

System Action:
terminates.

The program

User Response: Check DD state-

ments for error.

Lo
- I/0 ERR XXX

Explanation: Critical. A per- -
manent error occurred during an

I/0 operation on device xxx, where

XXX represents the unit number of

the device.

System Action: If no user options
are specified, the program ter-
minates. (For more information on
user options, see the topic I/0
ERRORS in the section "Sort/merge
Program"™ and topic "Read/write
Error Routines"™ in the section
"Program Modification.")

User Response: If error persists,
have the computing system checked.

Sort/Merge Messages 125

TER062A

IERO063A

IERO6UA

IER065A

126

- L E ERR

Explanation: Critical. The link-
age editor found a serious error;
execution of the sort/merge pro-
gram is impossible.

System Action: IERO066A
terminates.

The program

User Response: Check user-written
modification routines for a link
editing problem.

~ OPEN ERR XXXXXXXX

Explanation: Critical. An error
occurred during execution of the
OPEN routine for data set
XXXXXXXX, Where XXXXXXXX repre-
sents the ddname of the data set
being opened.

System Action: The program

terminates. -IER067I
User Response: Check for a mis-

sing DD statement.

~ DELETE ERR

Explanation: Critical. The sort/

merge program was unable to delete

either itself or a user-written
modification routine. This mes-

sage should appear only when modi-

fication routines are used.

System Action: The program

terminates.

User Response: Check modification

routines. If no modification rou-

tines are used, and the program is

running in a multiprogramming

environment, rerun the job. IER068A

— PROBABLE DECK STRUCTURE ERROR

Explanation: Critical. The end
of the SYSIN data set was found
before all needed user wmodifica-
tion modules were read.

System Action:
terminates.

The program

User Response: 1. Be sure the
SYSIN data set contains all modi-
fication routines that the MODS

statement specifies it will con-
tain. 2. Check for misplaced job
control language statements, espe-
cially a /* preceding a user modi-
fication module on SYSIN.

— APROX RCD CNT XXXXXX

Explanation: Critical. Sort
capacity has been reached. The
count xxxxxx is an approximation
of the number of records the sort/
merge program can handle with the
assigned intermediate storage.

System Action:
terminates.

The program

User Response: Rerun application
with more intermediate storage.

— INVALID EXEC OR ATTACH PARAMETER

Explanation: An error was found
in the PARM field parameters of
the EXEC statement, or in the
optional parameters of the parame-
ter list passed to a sort
initiated by ATTACH, LINK, or
XCTL. Invalid parameters are
ignored. If a parameter is
entered more than once, the last
entry is used (if valid).

System Action: Processing con-
tinues. 1Invalid parameters are
ignored.

User Response: None. For suc-
ceeding runs, check the validity
of optional parameters.

- OUT OF SEQ SORTINxx

Explanation: Critical. During a
merge only run, a data set was
found to be out of sequence. The
xx is replaced by the data set
identification (01 to 16).

System Action:
terminates.

The program

User Response: 1If a user written
routine was modifying the records,
check it thoroughly. If not,
check the data set that is in
error.

AJAress 1iSt ceceececcccccsccncccnnnss 13-74
With XCTL ccceacccccncecancacnacncaae 16
Areas, intermediate storage ..ee..... 43-44
Ascending Se€qUENCEe .c.cecaccccccscsccnsssa 107
Assignment coOmponent ..ececeeccescececcces 79
definition Of weecececccccncccacaceas 107
EXItS cecececccssnascnseansanss 82,8U,86
ATTACH cececaccccesccansccceasne 12-78,55,71
Average record length ceeccenececeacaa. 30

B eeccacncasccccancsascsnsassenase 43,044,045
Balanced direct access
technique e.eeceoccccscscsveess 16-17,47,75
influence On NMAX ccceacescsvccasosas 92
intermediate StOrage ceeceecceccccaeee. 43
Balanced tape technique 16-17,47,75
with checkpoint ceiceiceeeccecceannnaas 25
BALN ccceenccccscscsncscaccsnasnsceses 17,47,75
Base register cececcscccccncccaccccnansas 85
Binary control fields ...ceeeee... 23,25,97
Blanks in control statements .c..cceceees 22
BLKSIZE subparameter cceeceececscescesssess 90
Block, definition Of c.ececececccneaness 107
Blocking factOY ceeececececcannnnaneaaas U2
for efficCiency ceceecececccecccccaneseas 101

CALL MACYO ecececcsescsccssscsscanssecsenoce 8D
Cataloged procedures eceeeeese.. 47,57,71-72
Channel .ceecececesscsccccccsnasscanscnnssces 10
OVErlap eesceccecsaccccccnsnncnccenes 102
Closing data sets, routines for 92
Character data .cececccccscccccnccass 26,97
Checkpoint ceecececcecccccceeees 9,53,54,55
data SEt ceeccececsvccscccccancanas 25,49
YECOYAS cevececccacccansaacscncsccccce 49
restriction with ATTACH .ccececcccces 72
CKPT OpErand eceeceecceececsccncasccncancns 29
example Of ceecenceccccacaceanannceeas 26
Collating equal reCOrdS ..ceeeceseacaasaa 81
Collating S€qUEenCe eceeeececeeass. 115-116,13
definition Of .teececececccccnaceaeanss 107
Commas in control statements cceeeecececess 22
comments field .c..cececcccaccncccccccscas 20
Concatenated data S€et ..cceesceceesss 33,52
Continuation
CAYA cveecccccccnassssnsscaanancsnnes 20
MaxXimum NUMDEY ..cceececcecccceceas 21
COlUMN ceccacocccaccacsccscasanaccnnse 21
Control statement
compatibility ecceeececceacccanscaaass 35
fOXMAtsS cevececcaceccanaccceanacess 20-22
maximum number Of cccceecevencacccces 22
rules for preparation ceeeeeceeace... 22
SUMMALY ecececcecccnscnccccsananss 3637
control field
definition Of ceecececcaaseass 107,22-24
fOr MEYgEe .ceveecececccnacscccnacanaaas 28
1engthsS ececececceccececacannnceanasa 13,20
modification of cccccecac... 13,14,96-97
rules governing ececececeeccecccscacccess 25

Index

COoNtrol WOXd ceececeecccccnscscccncraneees 9,13
definition Of ceececcecccecncccnnences 107
CORE parameter ..eeceeeeesse... U47,48,75,104
count field acc.cecececcaccacnnennnnececsss 31
CRCX cecececccccsnceascncnccecescoss 17,47,75
Crisscross direct access
technique ...ceeccnccccceccaas 16-17,47,75
intermediate StOYage .ceccececcecesssss Ul
TesStrictionsS ceccececccecccccscecccnccne U7
sSorting €xXampleS .cecececc-sccmscacaass U7
WOYK AYEAS eeccscccncsccscaccsncncces U7
Critical MESSAJEeS ccececcccccssccsnesass 105
OPtiON cececececceccncccnanansnaess 47,48

Data CONVEXrter eceececcecceccccccccceees 42,50
Data set
CheCKpOint eceececcceccennccccnncnances 25
SIiZ€ weeecaccccccncnccesecsces 18,224,101
SOXt weacecccecccnccscccccsnacccnncane I
DCB parameter ceeceeccecececeseasses 30,49,50
DDNAMES
modification of ceeeceeceeeceeenea.. 103
optional characters forcececeeee 75
DD statements cecceecececcecccnancnees 48-55
exanples Of cceeeeccecencacanecass 57-70
required parameters ...ececececes.. 49-50
Deferred restart ceeecececececcecccncaeeaes 53
Definition phase cceceecececcccvennccaas 719
Delete reCOrdS ceevwecvsaceccscccnccansaes 32
DENSItY cececcececnccscccccansccncncsces D0
DEN subparameter ...ceecececeecccceccceaes 50
Descending sequence, definitiom of 107
DIAG ccescccoscccsncccscncccacnccncncncss /D
Direct access
AEVICES cecececcncscaccccacscanaees U41-U42
intermediate storage 43-44,47,81
techniques ceceeccencccncecncecens 16-17
Disk intermediate sStOrage ..cceevceececeeees 75
DISP pAYameteY .cececececacecccscccnocesss 49
DSNAME PAYaAMEteXr weeevececccccsccsccsesss U9

E option for FIELDS operandsS ...-..... 81,96
Efficiency, pProgram eccececececececececesssass 101
End-of-file routine ..ccecececccacccnass 94
END statement c.ceccecececccecccccncscececnss 19
eXanmples Of ceeeceeccnccvennneeass 38-U1
EODAD field cuvececcccccccacecscneas 35,93,94
Equal ’
control fieldS ceecececcccccscccnnansss 89
records, collation of ...cccecieaccee.. 81
Equals module eceeeceecccnancacanaseass 80,81
EROPT fi€ld ceececcceccsccccconeceanses 93,94
Exrror
read, write routines ...ccceceeccece.. 93-96
Critical ceeecececcccscccsscasnacans 117
I/0 ceevcesemsscccsasecsassoncauwene 18,82
Examples
END statement ..ceeceeececcacecnceccees 37-41
JCL coiescecsncscscacasacsansacanees 2I-70

Index 127

MERGE statement ...ccccce... 28-29,38,39

MODS statement 33-35,38,39,40,41

RECORD statement 31-32,38,39,40

SORT statement cceeecee... 26-27,38,40,41

Exceeding NMAX cecececceccccccencncess 91-92

Exceeding intermediate storage 91-92

EXEC statement cceeccececceccecccsceacaccces U7
Exit

modification ...ecceccccccanscee 32,79,81

Ell cceennccncecnccccncnsnnccsancccnas 99

separate link editing cececececec.. 84

sorting example ..eecececceccceceee 66,70

US€ Of cececccccccccccancsccnacnees 86

ElD5 ceeccccoacccncncnnseenas 55,73,78,99

restriction witlhi macros 73,88

sorting example .cceeececececse.. 61,62

US€ Of cccwcvcccsoncscnccsccnnases 87,88

El6 cececcccccnccaccosonccnncanscsnuas 99

sorting example cececese.. 61,62,66,60

USE€ Of ceceeccncscccosncceasnssae 91-92

El7 cececencapecccascsncnccscoscscacnnees 99

US€ Of eceeevcecccncccccsensasncscncse 92

El8 cccceccccscnaceccscnccncscssnnacaceas 99

US€ Of ceevecccoscsccccassnnsaaas 93-95

El9 ceececencncaccecssccccsncosncsannoe 99

USe Of .cccenccnnconccacccccasans 95-96

E2] wececcccsccscancccsccssosnccscancas 99

USE Of ceeecncnccccnscnncncncacacas 86

E25 L L B G B L B B B L I R T R I B L B B L N IR B RC B 99

USE Of cececccccnwacsscsccccaneeas 88-89

E27 cecesccccesnscncascasccccncncencnea 99

USE Of wieccccccncccncccncsenerene 92

E28 c.vcecccscccccccscccscscacennacscs 99

US€ Of .ccceececvccencncnnsannas 93-95

E29 weeccceccccanccsccnncccscncncacee 99

USE Of ccccccccccncenccasncanne 95-96

E3]l weececanccccccccacscccnnmancnanccas 99

USE Of .tcccevccccncocscncccsancencne 86

E35 cececnccscnccccsscccsane 55,73,78,99

restriction with macros eceecee... 73,99

sorting example 61,62,65,67,69

USE Of ccenccewoccscecssacceneceaes 89-91

E37 cececccccnscansccsacsccsnaccsesanes 99

USE Ofucecccccncccascccccncscanane 92

E38 cececcccncncccsncccccccscscccncancess 99

US€ Of cececcceenmcscscnncennceas 93-95

E39 teccccccccconcenccncancncaccencee 99

US€ Of ceeecconcnwccscscscnceanecas 95-96

E6l cenecccncccccccncaccccccccsews 82,99

sorting example ...cecececececee.. 61,62,67

US€ Of wenceiecconccecccncnnnneas 96-97

EXLST field cecuvecccccccensans 93,94,95-96

External references ..ccecececceccceccecssces 8U

Extract module .c..cecccccceaccceaces. 80,81,82

FIELDS operand
MEYJE cecccccacccncvencceease 28—-29,38,39
SOYt cecccecencncncccccncnonesnsns 22,25
examples Of ccceceneces 26-27,38,40,41
Final merge phase cecececececnccncencceces 82
Fixed-length records
definition for RECORD statement 30
influence ON NMAX cececccccncecacacaes 92
Fixed-point control field
Floating point control field 25,82,97
Forcing a technique .c.cecececcccccenccne 16

128

Format
of control statementS cececeececeeee. 20-22
SORT cececwcccscacccsacccccccnananaae 22
MERGE tcccccncnccescenncccnnncsacase 28
RECORD cecveceaccsccscssncsanccescnnsace 29
MODS cceencccsccccscsscncsvasnncceene 32
END cecvcccencscccccncocsnanceaccnse 35
FORMAT operand
MEXJE ceecccccanancncsccsccacsncanasncse 29

SOt wecevweccncoscccsccscccncsccsnonosee 2U

exarple Of cccececvccccnccncess 27,38

General assignment phase c.ceeececcceccecces 84
GETMAIN ccceccccecccccccccsancncccsnconenwe /6

Informational mMeSSAgesS ccecececcceccccese 105
Initialization phases ..c.cccececccececceees 79
INPFIL cccecccccscascnscsocccsscosncsncsscannce 3D
Input
definition Of c.cecccccccccacccsnnneas 52
fOr MEYQE cvcececevccccccccccnocsmmens 1l
fOr SOrt cececececceccceccccccnccecnes 14
modification of c.cccececcaccanass. 8788
StYX€aAM eceevccccccccccccscsanneccese 33,49
LAPE ceeccnccccccccccscecccncvcccneance 1D
Input data set
definition Of .c.cecceccenccccccanmnces 107
end—-of-file routine fOor .cceccceccece.. 94U
Iignored ccccccccccccccccccacseneccacs 88
modification of ...ccececccccccnces 87-88
Insert reCOrds eeecececevececcccceacsccscceces 82
Intermediate merge phase ceceecececcenece. 81
Intermediate StOYage eceeeececececcecececee. U1-45
efficient use Of cceececcccaecs.. 102-103
€XAMPleS cececeavcccnsnvenenncscccses U3
fOr MEYJE cucececcccccncncnsecncccncanes 15
fOY SOTt weicecccccencccnancencconsees 14
formulas
LAPE cecccncccencacnccccccnnenses 42,45
balanced direct acCeSS c.weecess 43,45
crisscross direct access oco..... 44,45
YeQUIrementsS cecececccccccceccnacncecens 10
Intermediate storage data set
definition Of cccececcncccccenaanciee 107
for 2314 techniquUe cececececcesceneanes 47
Invoking
MEYJE weeccevennccccnnccnnccncsccnceccs 15
SOYt ceveccccccwcccsncccnnnsncnneoocne LU
I/0 devices for sSOrt/merge eceeceeeccecececss 9
JI/0O EXYOXS cccesceccscccccnwcnccccscnensecs 18
routines to correct ceeccececcencncees 82

JCL .
see Job control language P, B
Job control 1language ceeceeeccceceees 38,47-55
examples Of ceccecccccccccccccanee 57-70
JOB statement cceececcecceccecccnccncccsces U7

Keywords, operand field .ccccecececcncnneees 20

L LR R I B I A B I G B I I I I B R IR IR IR I I T I W) Q3,uu'u5
Label checking ec.cesceccccccnccccsnases 9,9U
LABEL parameter cceeccecccccmcccccsmencoces 49

LENGTH Operandecececcecccccceacsccccecscnnsae 29

examples Of ceveeccecesss 31-32,38,39,40
Librari€S ececececccccscccseancsacscnnsaase 33
LINK eccecccscencenccassscnseanas 712-78,55,71
Linkage €ditOr cecececcecccacccccssass 33,48
Link editing, separate cceeeceececcecce... 84
List

AdAYESS ceecccacscccnacsinancacncas 13=7U

pParameter .cececececcecescesss 712,73-74,76,94
Load MmOAUlEeS eceveeeccssvccscscnccsnnnancaaa U8
LRECL ccccecneccecsascscacscsncsnccscsseass 30,50

Magnetic tape intermediate storage .. 41-42
Main storage
altering its valu€ .eeewseceaessss 104,75
OPtiON eceececccsccscssccccsccasncescanas U8
reguirements .ccvececcccscccccccccaes 10
Major control field cecececcccccccaaacas 22
definition Of t.euceeccecececncanaas 107
Maximum inpUt eeeececececcccnccscccess 42,45
with various merging techniques 17
Maximum intermediate storage ececceceecee.. 17
Maximum record SiZ€ eeceeeccccecsescs. 11,30
Merge
definition Of cceececececanccacnnass 107
pass, definition of ...ccececcanaa.. 107
PhASES ceceeecccnnncosccncasceassnss 81,82
MERGE statement e.eecececececcccccceecas 19,27
examples of ..ceeccecececsa.e 28-29,38,39
PATAMELEY s ceevcecssccosscasvcaciansons 28
Merging techniques .ceccecececececesssss 9,16-17
influence on intermediate storage ... 42
- in parameter 1ist ..ec.cecececececccceas 75
Messages
1iSt Of cevececcccenncnnccaneaass 117-126
OPtiON ceeewcecceccccscacnscsvenes U7,U8
in parameter 1iSt ceeeececcecececass 76
sorting example ...c.ceececcecae. 65,66
SYSGEN ccewssccaccecscaccanss 104,105
Minimum intermediate storage .ceceececec.. 17
Minimum main StOrage eceeeceeccecccccecceas 17
Minimum record SiZ€ ceeeeccccscescesas 10,30
default cececeececccecncccccncaases 30-31
Minimum machine requirements ...eccecese.. 10
Minor control field .c..ceececceccccncees 22
definition Oof tceeeecaceccecnccnenss 107
Modal length c.eceeeccecaceeasca 30-31,40,101
definition Of weieceecencccananansas 107
Modification routine ..ececececsacases 9,5U
eXitS ceevccceccccccccncacss 32,86-97,99
definition Of ecvececccecceaaceaass 107
in object form in input stream 39
in sort/merge exampleés eceee.... 38,39,40
in SYSIN cececcccsccscccccascccscsanes Sl
examples Of cccceeccecaceaass 61,62,65
1ink editing ceceececceeccccccccennas 8l
object fOrm ceeecececscccccanscnceaanss 34
Ooverlaying eceeeceeceeccceccccccaceass 35,84
With MACrOS ceceececncecccanacancases 73
MODS statement ceccececececcecccccccccocceases 19
examples Oof .ceeeeee.. 33-35,38,39,40,41
format Of cecevececeeeecenccnncenanes 32
indicating separate link editing 84
PArametersS ceceececcccnccscccscccwes 32-33
MOAULE cieecececcececcccccccccccnnccanes 79
€QUAlS ceccccccccccccccccccnacesss 80,81
eXtYaCt .cececcececccccascanass 80,81,82

MSG parameter .ceeceeee-... 47,48,76,105,117
Multiple control fieldsS ceceececcececaase 104
MultiprOogramming ceceeccecececceccecscnasscsee 75

considerations for 103,104,113
Multi reel Iinput ceeeeeeceeceececacenaasas 52

MUT cecccceccaccncacancncccscacnancssensaes Sl

NINAX ececcceccccacscnencesssass 18,61,62,82
calculation Oof c.cecececececcccnsaass 92
definition Of .ececeecccceccccacacass 107
EXIt ceeeceeccccaccccccacacacannas 91-92

Normalization of floating-point data ... 25

Operand field .ccceeecececceccccaceaeaas 20,22
Operation field wcececvenceaceccnanaas 20,22
OCptimization phase .cecececccccccesss 79,80
OPTION cevecocecscccccssscccccccaccsasansss 35
OptionNS, SYSUEN eeeececceccccencasss 103-104
Oscillating tape technique 16-17,47,75
exanple of forcing ...ceee... cemeeses 62
OSCL cceccecncccccncccnscnsnnncees 17,47,75
OUTFIL ceceeccccnncccceascascscaccnnsncsaas 35
Output
data Set ceccevcececccccccsccsceas OU,82
definition of cccieeeececcaceeass 107
IgNOYEAd cecececaveccccscaccnaaansss 91
modification of ...cceeeceecaa. 89-91
SYStEelll cevececcccnccccnnnccnnaceas UB
fOY MEYXQgEe ceeeecncceccecacnncncnnecnens 15
fOr SOrt eteeeececeeaceececcccnnns O

Packed decimal control field cceeceeceaes 97
Parameter list
fOr error €xXitsS ceeeccecccescscccccass U
With MacCrosS .ceeeecacaccacasas 72,73-74,76
PARM field cvceccvencccccncsccancannss U7
Performance, OptimMUm .ececeeceeccaceces. 101
PhaS€ weeccecccanccnccncscscsccncnannancana 19
definition Of ceeeccccccccsccsancasas 107
POLY ceccccccccccensacscscsansnsanas 17,47,75
Polyphase tape technique 16-17,47,75
with checkpoint ece.eeeecceeaccncennas 25
Private 1ibrariesS .ceeeceececececccccscacaasas 33
Procedures, cataloged ...c..... U7,57,71-72
Program
€XIitS ceececececcscsccccccacncasccanceascas 719
definition Of cecceeccccncccnanasas 107
WOdification ceeceececancccscacccccaas 79
termrination eceeeeccecceccscaccccenss 91-92

Read backward .ccceceaceccecaansscoannnaaas 81
Read erxor routinesS c.ceceeccececececeas 93-95,18
RECFM ceceoccscsoscoscscscsssscscssnsassss 31,50
Record
additicn Of cceeecccccccccocscccnsaanas 87
definition Of cccceececeanccacanneaas 107
deletion Of ..ccececccncccccccancacaas 82
length cicieecccceecencccncnccnnansas 30
SKIpped ceececcecceccccccocncaccaacnnasas 24
SiZ€ ceeececccesccacscacnccncseens 10-11,30

Index 129

StOYage AYECA ceeecvceeccccccccscncnecness 30
sumrmarization of c..cccecececesas 82,89,91
Record change exits
El5 wicacaaas eesscescesessccvescsea
E25
E35 ctececcscccccaccnsccannnnns ceeen
References, external
REJiON SiZCeeececcccncocncncanee
Register
base
conventions
saving and restoring e.eeceececececcees.. 85
Restart .ceeceeecaes cecsscsasaanane cesss 25,54
deferred cecececasscaccnascancasccences D3
RetUrN COAES weeecsssccaccascscnasscascens 82
for exit E15
for exit E16
for exit E25
for exit E35
general USe Of cecececceccnccccneeaasa 85
RETURN INGCTO seencescscasasnacnsceancecene 8D
Routine, modification e.cececeecceses. 32-33
RUNNING COMPONENL swvevecceccccaccsccnase 79
definition Of ceeeeeacecsccessccacseass 107
exits 86—-97

87-88
88-89
89-91

ceecencesencasscanss 8U

10,104,113

@eeeceese s escsevecnenecsces oo

P - 1o

cemecssescsccsaessnesness 99

. -
P I
ceececcscscccscnccsssans 88

1

ces e seeeccecosvacosese e ecsccocccoe

Sequence
CheCKking eceecececcenncsnsacansccenssan 90
C011ating cececaceccaceea-ass. 115-116,13
definition Of cceeeeecncececnaneanasas 107

Sequence distribution technique 9,16-17,47
definition Of cecececcecenceccaneaas 107
fOXCINGg cvecececececocscnccancsanansa 16
influence on intermediate storage ... 42
in parameter 1iSt .ceeceeccecccncscces 75

Sequencing, control fields eeeee 24

SEP parameter.c.ccceocecccas cecesessss 102,103

Separate 1ink editing eceeeccccececes

Size, data set

SIZE operand
example Of ceeecenecsccccnnns
merge

cceccenccecsccccccccmsnass 2U

26-27,38,40
28-29,39
sort 18,24
SKIPREC Operand ceeecececcesccecsaasss 24,91
SKIp reCOTrdS eceecececancccccccscacannsas 2U
sSort
blocking factor, definition 107
definition Of cccececececacncnaneaas 107
initiation Of c.eececenececccnccaneaaas 71
PHASE ccineccnacncccnccncncanannanasas 81
technigUe cececececcaccnacnncncanass 9,15
SORT cataloged procedure 71-72,47,57
SORT statement .ceceasmcecsccccncsacaees 18,19
examples Of .scceeacenaaa.. 26-27,38,40,41
fOrmat Of weecececcccncananecncccneaas 22
image fOY MACKOS eeeacescaccsccascaas 1L
parameters 22-25
SORTCKPT DD
example Of cecececececccnncacasecnasas DU
SUMMAYY ecccececsccscsacannsscccncnsne 53
use of 49,54
SORTD cataloged procedure ee...... 72,47,57
SORTIN
data SEt .ececescccnccnncanncancanaas Ol
ignored ceceeececececacccnccccenssaa. 78,88
modification of c..ccccceceecs.. 87-88

e@eeacecscecscosceennesesmen

e e s e cecesesensoencccsene e e

130

DD ceececccceccccacncscsecssscsscsnsccnns
examples
of ...
use of
with macros
SORTINO1-16 DD
exanmples Of ceceveeeccaanans
sunwary
use of
SORTLIB DD
exXanple Of cecececcecececesncacancans D9
in cataloged procedure ..eeeceees-.. 71,72
SURTAYY Of ccececcececccacacaccnasnans 95
use of
with macros
SORTMODS
data SEet ececeecccccccccccccsanccnaa
DD statement
exanmples Of .ceeccecacaaan
sunmary
USE Of cecceccccacnanccennacennaas U9
SORTOUT
data SE€t ceecececsscccssnsccnesess 718,91
DD statement .ceeceecceccescecssss 30,31,73
exanple Of cceeeeeee.. 54,57-62,64-70
SUMMALY ececccccvcescccnncasansans 925
use of 49,54
SORTWK
data sets
DD statements
examples
of «..... 53,57,59,61,62,64,65,69,70
SUNMMALY ececcoseccevcscnncnmaansaas D5
use of 48,52
With MACYOS .ececenccrcacencecnaans 13
SPACE PArameter ceeceecececessanccascscasas 49
Spanned reCOrdS ceeeeceencecansasasas 10-11
definition of
Special charactersS ee.eecececesscccsceecss 15
Storage capacity, exceeding -........... 18
Storage, intermediate
see intermediate storage
Storage, main
see main storage
Summarization of records 82,89,91
Syster generation e..cceececccsceceas 75,101
options and requirements 103-104
Syster 1ibrariesS .c.eeceecceececcscsacaaces 33
SYNAD field 93,94,95-96
SYSIN DD wecececccceacccccacacncaasansacs 33
exanples Of cececececaneeaa. 57,59,60,61
SYSLIN DD
in cataloged procedure ..ceececece-e.. 71
SUNITAYY «coceecccecacscevcscsscsansanss DD
USE Ofceececncccacncsccacaaccaccancass U8
SYSLMCD DD
SUNMALY cccececccscsccsesaccanasanasss D5
use of
SYSPRINT DD
in cataloged procedure ...ceeeseccecses 71
surmary
use of
SYSCUT DD
example Of ceeeeececsececcenaacaccaas 59
in cataloged procedure 71,72
SUNIAYY eecevcacacsccaccsasccannaceas D5
use of
with macros

30,73
51-52,57,59,61,62,64,65,69,70

cceceesscecescscccccscananaes U8

S

52,60,67,68

- 1

ceceecsececescacssceccscccacscas U8

cececesesesescsccccaccesanscsas U8

Y

54,84

54,61,62,65

cececscsaccessacecevensass OO

eceeeeveccseocosccccencsonce

52,53

eeesomeevecsceecscsseseneeoeos

cececescacecanceccseesasas 10

ceccecescccccccscancesccnsssss U8
cececacesceasceccccccacsasacs DO

cecescsseacacccsnsacncacensscas U8

cecscmccecccsescencencancaccss U8

ceecscccascesececccanansas 13

~—

SYSUT1 DD
in cataloged proceduUre ...cceececene-as 71
SUNMAYY eceeacecccccsscncscoancsencnonass D5
USE Of cucecenecececancnccancanncnneas U8

Tape
intermediate storage 42,45,47,75,81
switching device cceeeceecennceeesas 102

teCchnigues eseeeececceceecennananass 16-17

units, MAXiMUM NUMDEY ceecececccceascass U2
Techniques, sorting and merging e.eecee... 9
Temporary data Set ceeeeccecacceccceaeanas U9
Termination

due to exceeding storage capacity ... 18

due to I/0 E€YYOYS ceeececcccccsceceass 18
Total tracks for intermediate storage 43,44
Track CapacCity eceeeeceecccececcnancanasaas 31
Translation feature ec.ecececeecececnanass U2
TRTCH subparameter ceecasececess 50
TYPE OpPErand ceeceeecaceccccccccaccccncascs 29

examples Of cc.eeeeceeee. 31-32,38,39,40

UNIT pPArameter cceeceescesccsacccccsscasas U9
User—-written routine .c..eeceeece. 9,33-34,79
definition Of cceeccecaccceccccnaess 107

Variable-length records
definition of RECORD statement 30
influence ON NMAX ceceeeccceccccansaes 92
restriction with 7-track tape 41

Variakle-length spanned records 10-11
VOLUME parameter ceeceeececceccssscnaasas U9

when required .c.eceeeececeaceccacaccaes 52
VRE Y€COYAdS eeveececnscvecsnancnasasaass 10-11

WOTK data SELS eeececscccccccscncsccnsas D2
for 2314 technique .ececececcancacass U7
Write errcors, routines for 95-96

XCTL cccoceaseacccccnansacaneeeea 12-78,55,71
special considerations ..eecececcececss.. 716

zoned decimal data cceececcccacanceass 27,97

2301 ATUM wceacceaccecccceacessaes 41-042,47,75
efficient Us€ Of weececcccecacanansas 102
merging example ecceeececccceccnccccaeas 67

2311 AiSK ceccccccccesccncceass H1-U42,47,75
efficient US€ Of wceeceececncacacaaeas 102
sOorting exXample ec.eececcececcacceas.. 61,65

2314 storage facility eeeceeeec-. e. U41-42,75
efficient Use Of ceececenecencecaaas 102
merging technique .eceeceeccecccenaeaas 17
sorting exXample ececececceccaccecaas 66,69

T7-track taApPE eceeeeecccsaneneeaa. U1-42,049,50
SOrting exXample ceceececceccccece.s 64,68

9-traCK taAPE eececccccecccccnccncaccnsass U1
sorting example ...cceeeeeceee.. 57,60,61

/* Statement cececececcecccnccceccocecases 35

Index 131

GC28-6543-£

BV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

V'S Ut palud - 09€/S INGI

S-€¥59-8209

READER’'S COMMENT FORM

IBM System/360 Operating System Form GC28-6543-5
Sort/Merge
® Is the material: Yes No

Easy toread? ... 0 |

Well organized? 0O 0O

Complete? . O O

Well illustrated? ... O O

Accurate? ... O O

Suitable for its intended audience? O O

¢ How did you use this publication?

] Asan introduction to the subject Other
[0 For additional knowledge

¢ Please check the items that describe your position:

] Customer personnel] Operator] Sales Representative

[0 IBM personnel [0 Programmer] Systems Engineer

[J Manager O Customer Engineer] Trainee

[Systems Analyst [J Instructor Other
® Please check specific criticism(s), give page number(s), and explain below:

[0 Clarification on page(s) [Deletion on page(s) ,

[0 Addition on page(s) ... [0 Error on page(s) ...
Explanation:

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC28-6543-5

YOUR COMMENTS PLEASE . . .

This publication is one of a series which servesas reference for systems analysts, program-
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reyiewed by the persons responsible for writing and publish-
ing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

FIRST CLASS
PERMIT NO . 1359
WHITE PLAINS, N.Y.

EE——
BUSINESS REPLY MAIL
R
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,
L]
L
——
POSTAGE WILL BE PAID BY .
|
. .
IBM Corporation
.]
112 East Post Road —
. EE——
White Plains, N. Y. 10601
]
|
——
Attention: Department 813 (L) —
G
Fold Fold

TSIV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

l!""

A
o -
0
™
<
0
©
0
N
[&]
(6]
<
0
D
£
hel
Q
2
£
<
a. -

,
o
S
s |
=
@
T
- / \

Figure total
tracks needed
using Formula 4

Divide T among

Prepare the
following JCL

s = the work areas

you are using

statements. See

Divide T among

the work areas
you are using,

O

Use the SORTD

cataloged procedure.

See Section 2, Topic3.

Appendix A: Summary of How to Use the Sort/Merge Program 111

The topics referred to in Section 2 are: on page . Section 2, Topic 2.
Prepare a SCS)RT Do you Topic 1 - Defining the Sort or Merge)
sstafe‘ment. € |l Sort want to Sort Merge Prepare a MERGE Topic 2 - Job Control Language for Sort/Merge Prepare the following
Tz;ff’]" 2, or Merge ? statement. See Topic 3 - Determining Intermediate Storage ;CLFS'O*;"‘?"“: gee
icl. . . . ection opic 2.
Section 2, Topic1. Requirements. ! //SORTWKO1 DD One for each //SORTWKOI DD One for each
] J * //SORTWKOs DD —Work area //SORTWKI7 DD work area
Prepare a MODS //iobname JOB SORT Prepare the
statement. See PROC=SORT following JCL
Section 2 - Variabl statements,
Topic 1. ’ [eng'hlfeczrds Yes Prepare a RECORD //stepname EXEC SORT[B
for input ? | statement. See PROC=SORTD *
Section 2. Topic 1. For u' Sort For a | Merge
//SYSIN DD *
//SORT.SORTIN DD Defining the input //SORT.SORTINOT DDy o0 *
Specify E for the o 1
Eo any'of Yes Spval|uz onOSrOR$ J data set //SORT.SORTINI6 DD input data set
CL;,;:U:::::M »! o MERGE stmt I I Put the Sort/Merge and JCL statements together as follows:
fields ? for conrro}: fields + // iobname JOB
you are changing. . //stepname EXEC
Wwill Pre END .
N 111 you use No R epare an //SORT.SORTOUT DD Defining the output If you are using the SORT or f //SORTLIB DD DSNAME = SYS1.SORTLIB,DISP = SHR
° Modification »|{ statement. See - ’
I routines ? Section 2. Topic | data set SORTD procedure, omit these {//SYSOUT DD SYSOUT = A
, Topic1. //SYSLIN DD UNIT = SYSDA, SPACE = (80, (10,10))
! Include these if you have //SYSLMOD DD UNIT = SYSDA, SPACE = (3600, (20,20, 1))
B any of ndicate that If you are doing modifiation tauines o be Zsysun DD UNIT = (SYSDA,SEP = (SORTLIB, SYSLMOD, SYSLIN)),
the routines Yes fact on a RECORD b JOB a merge, skip to ink edited and are not using SPACE = (1000, (60,20))
change revord > o e o // jobname PGM = SORT C and prefix the the SORT procedure //SYSPRINT DD DUMMY
lengths 2 Section 2, Topic1. //stepname EXEC {PGM = |[ERRCO00 } SYSIN DD by
< //SORTLIB DD DSNAME = SYST, SORTLIB, DISP = SHR SORT.
No il you use Use the SORTD //SYSOUT DD SYSOUT =A For a I Sort For a | Mer
ge
< l coﬁg’ﬁ merge cataloged //SYSLIN DD UNIT =SYSDA, SPACE = (80, (10, 10))] !
ged proc 7 procedure. //SYSLMOD DD UNIT = SYSDA, SPACE = (3600, (20, 20, 1)) //SORTIN DD //SORTINOI DD
Prepare an ESND] //SYSUTI DD UNIT = (SYSDA, SEP = (SORTLIB, SYSLMOD, SYSLIN)), X :
statement. See // SPACE = (1000, (60, 20)) //SORTIN16 DD
Section 2, No //SYSPRINT DD DUMMY Proceed fon © [
Topic 1. et a
names by SORT,
!nclude these only //SORTOUT DD
o " if you have mod- |
epare the ification routines
Prepare a DD following JC;— that need link For I Sort For a lMerge Sort I l Merge
Are any of statement definin, statements. See editing. - SORTINOY DD
the rouﬁnyes ina Yes the library. Seeg Section 2, Topic 2. ¢ //SORTIN DD Defl:u:g the //' One for each //§ORTWKOI PP None
. . I in ata set . : *
library ? Section 2, Toplj;Z. Py //SORTIN16 DD input data set //SORTWK16 DD
I ' | I - |
//SORTOUT DD Defining the output data set //ddname DD For modification routines in a library.
Wil Prepare a . . //SORTMODS DD For modification routines in SYSIN
ill any of \ //SYSIN bD *
the routines be in Yes > :z’:::gbsszg If you are SORT or MERGE statement
SYSIN? Soctt 2- ® doing a merge, RECORD statement
d ection 2, Topic2. skip to C MODS statement
END statement
] Object decks for modification routines in SYSIN
I
/*
Y
Will you use Do any of Fi | ks
a sort/merge™ Yes » ¢~ your routines nee Yes Use the SORT 'gel:;:dh'? frac Will you N Will you Is your Use any comb, Do not use Figure number of Prepare the //SORTWKO1 DD
cataloged proc | TN ink editing ? > cataloged procedure. ol 5 o use 2314 with > 6 2 use tape for input data on 7- of 7- and 9- 7-track tape o] tapes needed following JCL |, //SORTWKG2 DD One for each infer-
> omula 5 on work areas ? intermediate track tape ? track tapes for for intermediate A 7| using Formulas 1, statements. See . mediate storage tape
fpage. . storage i;\termediate storage 2, or 3onpage____. Section 2, Topic2, //SORTWK32 DD
storage

